C. Both A. and B.
Explanation:
Statement A. Reducing the volume is true because of Boyle's law, which states that for a gas at fixed temperature, the pressure p and the volume V are inversely proportional:

Therefore, when the volume V is reduced, the pressure p increases.
Statement B. Adding more gas is also true: in fact, if we add gas into the container, we will have more molecules of the gas hitting the wall of the container. But the pressure of a gas is exactly given by this: by the collision of the molecules against the wall of the container, so the more the molecules of gas, the greater the pressure.
The old style (incandescent) light bulb converts more energy
into heat than it does into light. If you're using it mainly as a
source of light, then it's a bummer, and its efficiency is very low.
BUT ... if you're using an incandescent light bulb as a heater, then
its efficiency is much better. It all depends on your point of view.
Answer:
After 1 sec = 4.9 m
After 2 sec = 19.6 m
After 3 sec = 44.1 m
After 4 sec = 78.4 m
After 5 sec = 122.5 m
Explanation:
After 1 sec:
<em>u=0m/s t=1 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(1) + (1/2)(9.8)(1²) = 4.9m
After 2 sec:
<em>u=0m/s t=2 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(2) + (1/2)(9.8)(2²) = 19.6m
After 3 sec:
<em>u=0m/s t=3 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(3) + (1/2)(9.8)(3²) = 44.1m
After 4 sec:
<em>u=0m/s t=4 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(4) + (1/2)(9.8)(4²) = 78.4m
After 5 sec:
<em>u=0m/s t=5 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(5) + (1/2)(9.8)(5²) = 122.5m
Answer:
C. 30.6m
Explanation:
To find the height of the tower, we are to use Newtons law of motion to solve this problem. Since the penny is falling from the top of the tower, it is acted by the acceleration due to gravity. The formula to be used is:

Where H is the height of the tower, t is the time taken to hit the ground, u is the initial velocity and g is the acceleration due to gravity.
Given that, t = 2.5 s, g =9.8 m/s², u = 0 m/s (at the top of tower)

Answer:
A)6.15 cm to the left of the lens
Explanation:
We can solve the problem by using the lens equation:

where
q is the distance of the image from the lens
f is the focal length
p is the distance of the object from the lens
In this problem, we have
(the focal length is negative for a diverging lens)
is the distance of the object from the lens
Solvign the equation for q, we find


And the sign (negative) means the image is on the left of the lens, because it is a virtual image, so the correct answer is
A)6.15 cm to the left of the lens