I’m pretty sure it just wants you to list the property’s meaning the material and density
Answer:
Average speed = 0.35 m/s
Explanation:
Given the following data;
Distance = 1.3 Km
Time = 62 minutes
To find the average speed in m/s;
First of all, we would convert the quantities to their standard unit (S.I) of measurement;
Conversion:
1.3 kilometres to meters = 1.3 * 1000 = 1300 meters
For time;
1 minute = 60 seconds
62 minutes = X
Cross-multiplying, we have;
X = 62 * 60
X = 3720 seconds
Now, we can calculate the average speed in m/s using the formula;


Average speed = 0.35 m/s
Answer:
Explanation:
tha question is too hard simplfy it fast
Answer:
Technician b is correct.
Explanation:
Crimping cable allows a firm connection in mechanical terms and allows a low resistance path for the signal or the current flow, solder although it is better in terms of electrical conduction, can be impractical if the cable is subjected to excessive movement.
A crimped cable with excessive movement can also be easily broken at the ends, where it joins the part of the cable that is crimped, for this reason, a cable that is in excessive motion is recomended to be spliced by joining cable with cable
.
In order to decide which metod is better for splicing cables its necessary to evaluate each situation separatly.
Answer:
The final velocity of the car is 2.02 m/s
Explanation:
Hi there!
The kinetic energy of the car as it runs along the first flat horizontal segment can be calculated using the following equation:
KE = 1/2 · m · v²
Where:
KE = kinetic energy
m = mass
v = velocity
Then, the initial kinetic energy will be:
KE = 1/2 · 0.100 kg · (2.77 m/s)²
KE = 0.384 J
When the car gains altitude, it gains potential energy. The amount of gained potential energy will be equal to the loss of kinetic energy. So let´s calculate the potential energy of the car as it reaches the top:
PE = m · g · h
Where:
PE = potential energy.
m = mass
g = acceleration due to gravity.
h = height.
PE = 0.100 kg · 9.8 m/s² · 0.184 m
PE = 0.180 J
Then, the final kinetic energy will be (0.384 J - 0.180 J) 0.204 J
Using the equation of kinetice energy, we can obtain the velocity of the car:
KE = 1/2 · m · v²
0.204 J = 1/2 · 0.100 kg · v²
2 · 0.204 J / 0.100 kg = v²
v = 2.02 m/s
The final velocity of the car is 2.02 m/s