This actually means that the object which is emitting light spectrum is moving away from us.. how do you know that ? well.. it is clearly mentioned that it is a red shift so the wavelengths will stretched more . and thus the spectrum turns more reddish as it has higher wavelengths .. hence so called red shifts
I think it’s D) all of the above
<span>160 Joules
For this problem, we can ignore the vertical component of the applied force and focus on only the horizontal component of 80 N and since work is defined as force over distance, let's multiply the force by the distance:
80 N * 2.0 m = 160 Nm = 160 kg*m^2/s^2 = 160 Joules.
So the cart has a final kinetic energy of 160 Joules.</span>
A)<span>
dQ = ρ(r) * A * dr = ρ0(1 - r/R) (4πr²)dr = 4π * ρ0(r² -
r³/R) dr
which when integrated from 0 to r is
total charge = 4π * ρ0 (r³/3 + r^4/(4R))
and when r = R our total charge is
total charge = 4π*ρ0(R³/3 + R³/4) = 4π*ρ0*R³/12 = π*ρ0*R³ / 3
and after substituting ρ0 = 3Q / πR³ we have
total charge = Q ◄
B) E = kQ/d²
since the distribution is symmetric spherically
C) dE = k*dq/r² = k*4π*ρ0(r² - r³/R)dr / r² = k*4π*ρ0(1 -
r/R)dr
so
E(r) = k*4π*ρ0*(r - r²/(2R)) from zero to r is
and after substituting for ρ0 is
E(r) = k*4π*3Q(r - r²/(2R)) / πR³ = 12kQ(r/R³ - r²/(2R^4))
which could be expressed other ways.
D) dE/dr = 0 = 12kQ(1/R³ - r/R^4) means that
r = R for a min/max (and we know it's a max since r = 0 is a
min).
<span>E) E = 12kQ(R/R³ - R²/(2R^4)) = 12kQ / 2R² = 6kQ / R² </span></span>
Answer:
When a an object is been rotated its resistance capacity to that rotational force is know as rotational inertia and this mathematically given as
Where m is the mass
r is the rotation radius
For the spinning of the lamp as a baton to work the location of the center of mass of the floor lamp needs to be located
This is more likely to be located closer to base of the lamp as compared to the top, so success of spinning a floor lamp like a baton is highly likely if the lamp is grabbed closer to the base because that is where the position of its center of mass is likely to be.
Explanation: