Answer:
Minimum uncertainty in velocity of a proton,
Explanation:
It is given that,
A proton is confined to a space 1 fm wide, 
We need to find the minimum uncertainty in its velocity. We know that the Heisenberg Uncertainty principle gives the uncertainty between position and the momentum such that,

Since, p = mv





So, the minimum uncertainty in its velocity is greater than
. Hence, this is the required solution.
The stomach is above the waist, below the waist is your, yunno. the stomach and bladder sit right on top of the waist, hope this helps, have an amazing day:)
Answer:
4.17 m/s²
Explanation:
We are told the reaction time is 0.2 s. Now, during this reaction time the car is going to travel an additional distance of
: x = u × t = 40 × 0.2 = 8 m
where u is the initial velocity of the car which is 40.0 m/s.
We are told that he had 200 m to stop before applying brakes. Thus, after applying brakes, he now has a distance to cover of; s = 200 - 8 = 192 m
Since vehicle is coming to rest acceleration would be negative, thus using Newton's equation of motion, we have;
v
² = u² - 2as
v = 0 m/s since it's coming to rest
u = 40 m/s
s = 192 m
Thus;
0² = 40² - 2(a)(192)
0² = 1600 - 384a
a = 1600/384
a = 4.17 m/s²
Answer:
The rotation of a planet around it's sun
Answer:
The answer is: To accelerate an object <u>the force applied to the object</u> has to increase.
Explanation:
the acceleration of an object <u>increases with increased force</u> and <u>decreases with increased mass.</u>