The acceleration due to gravity is given as:
g = GM/r²
<h3>
Derivation of gravitational acceleration:</h3>
According to Newton's second law of motion,
F = ma
where,
F = force
m = mass
a = acceleration
According to Newton's law of gravity,
F<em>g </em>= GMm/(r + h)²
F<em>g = </em>gravitational force
From Newton's second law of motion,
F<em>g </em>= ma
a = F<em>g</em>/m
We can refer to "a" as "g"
a = g = GMm/(m)(r + h)²
g = GM/(r + h)²
When the object is on or close to the surface, the value of g is constant and height has no considerable impact. Hence, it can be written as,
g = GM/r²
Learn more about gravitational acceleration here:
brainly.com/question/2142879
#SPJ4
Answer:
Explanation:
A closed system can exchange energy but not matter, with its surroundings. An isolated system cannot exchange any heat, work, or matter with the surroundings, while an open system can exchange energy and matter.
Hope this helped you!
Assume the motion when you are in the car or in the school bus to go to the school.
To describe the motion the first thing you need is a point of reference. Assume this is your house.
This should be a description:
- When you are sitting and the car has not started to move you are at rest.
- The car starts moving from rest, gaining speed, accelerating. You start to move away from your house, with a positive velocity (from you house to your school) and positive acceleration (velocity increases).
- The car reaches a limit speed of 40mph, and then moves at constant speed. The motion is uniform, the velocity is constant, positive, since you move in the same direction), and the acceleration is zero.
- When the car approaches the school, the driver starts to slow down. Then, you speed is lower but yet the velocity is positive, as you are going in the same direction. The acceleration is negative because it is in the opposite direction of the motion.
- When the car stops, you are again at rest: zero velocity and zero acceleration.
- In all the path your velocity was positive, constant at times (zero acceleration) and variable at others (accelerating or decelerating).
- When you comeback home, then you can start to compute negative velocities, as you will be decreasing the distance from your point of reference (your house).
Answer:
The magnitude of the electric field be 171.76 N/C so that the electron misses the plate.
Explanation:
As data is incomplete here, so by seeing the complete question from the search the data is
vx_0=1.1 x 10^6
ax=0 As acceleration is zero in the horizontal axis so
Equation of motion in horizontal direction is given as


Now for the vertical distance
vy_o=0
than the equation of motion becomes

Now using this acceleration the value of electric field is calculated as

Here a is calculated above, m is the mass of electron while q is the charge of electron, substituting values in the equation

So the magnitude of the electric field be 171.76 N/C so that the electron misses the plate.