If there is one table (t=1) then 6 chairs (c=6) can be placed around the table, 2 along the length on each side and 1 at each end.
When t=2, and the tables are end to end (joined at their width) c=10, that is, 4 chairs on each side of the double table and 1 at each end. Each time a table is added c increases by 4 so we can write c=4t+2 the constant 2 being the single chair at each end. If the tables are separated then c=6t.
Answer: 6
Explanation
If we divide our figure into six, we get the following figure:
As we can see, we are left with 6 equal parts. This can be confirmed by solving the equation:
<span><span>13−<span>6x</span></span>=<span><span><span>(<span><span>2x</span>−5</span>)</span>2</span>+3</span></span>Step 1: Simplify both sides of the equation.<span><span><span>−<span>6x</span></span>+13</span>=<span><span><span>4<span>x2</span></span>−<span>20x</span></span>+28</span></span>Step 2: Subtract 4x^2-20x+28 from both sides.<span><span><span><span>−<span>6x</span></span>+13</span>−<span>(<span><span><span>4<span>x2</span></span>−<span>20x</span></span>+28</span>)</span></span>=<span><span><span><span>4<span>x2</span></span>−<span>20x</span></span>+28</span>−<span>(<span><span><span>4<span>x2</span></span>−<span>20x</span></span>+28</span>)</span></span></span><span><span><span><span>−<span>4<span>x2</span></span></span>+<span>14x</span></span>−15</span>=0</span>Step 3: Use quadratic formula with a=-4, b=14, c=-15.<span>x=<span><span><span>−b</span>±<span>√<span><span>b2</span>−<span><span>4a</span>c</span></span></span></span><span>2a</span></span></span><span>x=<span><span><span>−<span>(14)</span></span>±<span>√<span><span><span>(14)</span>2</span>−<span><span>4<span>(<span>−4</span>)</span></span><span>(<span>−15</span>)</span></span></span></span></span><span>2<span>(<span>−4</span>)</span></span></span></span><span>x=<span><span><span>−14</span>±<span>√<span>−44</span></span></span><span>−<span>8</span></span></span></span>
66.6667
20=x/100•30
Solve this equation and you will get your answer (66.6667)