The answer is c Ai3n3 yea that’s the right answer idk
Answer:

Explanation:
Let suppose that centrifuge is rotating at constant angular speed, which means that resultant acceleration is equal to radial acceleration at given radius, whose formula is:

Where:
- Angular speed, measured in radians per second.
- Radius of rotation, measured in meters.
The angular speed is first determined:

Where
is the angular speed, measured in revolutions per minute.
If
, the angular speed measured in radians per second is:


Now, if
and
, the resultant acceleration is then:


If gravitational acceleration is equal to 9.807 meters per square second, then the radial acceleration is equivalent to 1006.382 times the gravitational acceleration. That is:

Answer:
The ability of space-time to move
Explanation:
Solution :
a). From Newtons second law,
F = ma
The total tension force is 2T.
∴ 2T - (m + M)g = (m+ M)a
Then



b). From the person,
F = ma
T - Mg + N = Ma
or N = Ma + Mg - T
= (63 x 9.8) + (52 x 9.8) - 600
= 617.4 + 509.6 - 600
= 527 N
Answer:
678.2 km/h and 80.54° north of east
Explanation:
From the question,
Using pythagoras theorem,
a² = b²+c²..................... Equation 1
Where a = resultant velocity
Given: b = 600 km/h, c = 100 km/h
Substitute these values into equation 1
R² = 600²+100²
R² = 360000+10000
R² = 460000
R = √460000
R = 678.2 km/h.
And the direction is
tanθ = 600/100
tanθ = 6
tanθ = 6
θ = tan⁻¹(6)
θ = 80.54°.
Hence the resultant velocity of the aircraft is 678.2 km/h and 80.54° north of east