1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
3 years ago
11

Addition of a lubricant such as oil to a surface will __ friction ?

Physics
1 answer:
Mashcka [7]3 years ago
5 0

Answer:

decrease

Explanation:

Addition of a lubricant such as oil to a surface will decrease friction. This makes the surface more greasy or slippery. This is very much efficient in machines, for example.

You might be interested in
A car travels 40 miles in 30 minutes.
lukranit [14]

Answer:

(a)Average velocity ,v =128.74 Km/hr

(b)Kinetic Energy , K=958546.875 Joule

(c)Distance, s=268.8m

(d)Acceleration, a= - 2.38 m/s^2

<u>Explanation</u>:

<u>Given</u>:

Distance travelled = 40 miles

Time taken = 30 minutes.

(A) The average velocity in kilometres/hour

Converting 40 miles into km ,

we know that,

1 mile = 1.60934

40 miles =  40 x 1.60934

so 40 miles  =  64.3738 Km

similarly converting 30 minutes into hours

1 minute = \frac{1}{60}hours

30 minute = \frac{30}{60}hours

30 minute = \frac{1}{2}hours

Now

Average velocity = \frac{Speed}{time}

Substituting Values,

Average velocity = \frac{64.3738}{\frac[1}{2}}

Average velocity = 64.3738 \times 2

Average velocity =128.74 Km/hr

(B) If the car weighs 1.5 tons, what is its If the car weighs 1.5 tons, what is its kinetic energy in joules (Note: you will need to convert your velocity to m/s)? in joules (Note: you will need to convert your velocity to m/s)?

Converting 1.5 tons into kg we get

1 ton = 1000 kg

so 1.5 ton =1500 kg

converting  velocity to m/s

128.74  \times \frac{5}{18}

=>35.75 m/s----------------------------------------------------------(1)

kinetic energy  K= \frac{1}{2}mv^2

Substituting the values,

K= \frac{1}{2}1500(35.75)^2

K= \frac{1}{2}1500(1278.06)

K= \frac{1500 \times (1278.06)}{2}

K= \frac{1917093.75}{2}

K=958546.875 Joule---------------------------------------------(2)

(c)When the driver applies the brake, it takes 15 seconds to stop. How far does the car travel (in meters) while stopping

Lets use Distance formula,

S= ut+\frac{1}{2}at^2

Substituting the known values,

s= ut+\frac{1}{2}at^2

s= (37.75)(15)+\frac{1}{2}a(15)^2

s=566.25+\frac{1}{2}a(225)

s=566.25+\frac{(225a)}{2}-------------------------------------(3)

(D) What is the average acceleration of the car (in m/s2) during braking?

Using the formula

v=u +at

re arranging the formula we get,

a = \frac{v - u}{t}

Substituting the values

a = \frac{0 - 35.75}{15}

a = \frac{- 35.75}{15}

a= - 2.38 m/s^2----------------------------------------(4)

Now substituting 4 in 3 we get

s=566.25+\frac{(225( - 2.38)}{2}

s=566.25+\frac{-535.5}{2}

s=536.25-267.75

s=268.8m--------------------------------------------------------------(5)

4 0
3 years ago
Argon gas enters steadily an adiabatic turbine at 900 kPa and 450C with a velocity of 80 m/s and leaves at 150 kPa with a veloc
Crazy boy [7]

Answer:

Temperature at the exit = 267.3 C

Explanation:

For the steady energy flow through a control volume, the power output is given as

W_{out}= -m_{f}(h_{2}-h_{1} + \frac{v_{2}^{2}}{2} - \frac{v_{1}^{2}}{2})

Inlet area of the turbine = 60cm^{2}= 0.006m^{2}

To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.

Assuming Argon behaves as an Ideal gas, we have the specific volume v_{1}

as

v_{1}=\frac{RT_{1}}{P_{1}}=\frac{0.2081\times723}{900}=0.1672m^{3}/kg

m_{f}=\frac{1}{v_{1}}\times A_{1}V_{1} = \frac{1}{0.1672}\times(0.006)(80)=2.871kg/sec

for Ideal gasses, the enthalpy change can be calculated using the formula

h_{2}-h_{1}=C_{p}(T_{2}-T_{1})

hence we have

W_{out}= -m_{f}((C_{p}(T_{2}-T_{1}) + \frac{v_{2}^{2}}{2} - \frac{v_{1}^{2}}{2})

250= -2.871((0.5203(T_{2}-450) + \frac{150^{2}}{2\times 1000} - \frac{80^{2}}{2\times 1000})

<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>

evaluating the above equation, we have T_{2}=267.3C

Hence, the temperature at the exit = 267.3 C

5 0
3 years ago
A student who takes a multiple-choice test by reading the stem of each item, generating the correct response before looking at t
Ludmilka [50]

Answer:

(A) a heuristic

Explanation:

A heuristic:It is a reasoning strategy to find answers, make judgement about any something."

It is possible to choose between the options given, we have the following interpretation as; Interpretation: "A heuristic: finding answers is a thinking technique, evaluating something." Mechanism: In the heuristic approach the method is to find solutions or answers to a question by choosing the right and optimal compositions.

5 0
3 years ago
In an economy, the demand for labor is given by the equation W = 15 - (1/200) L and the supply of labor is given by the equation
mr_godi [17]

Answer:

the equilibrium wage rate is 10  and the equilibrium quantity of labor is 1000 workers

Explanation:

The equilibrium wage rate and the equilibrium quantity of labor are found as the point where the equation of demand intercepts the equation of supply, so the equilibrium quantity of labor is:

W_{Demand} = W_{Supply}

15 - (1/200) L = 5 + (1/200) L

15 - 5 =  (1/200) L +  (1/200) L

10 = (2/200) L

(10*200)/2 = L

1000 = L

Then, the equilibrium wage rate is calculated using either the equation of demand for labor or the equation of supply of labor. If we use the equation of demand for labor, we get:

W = 15 - (1/200) L

W = 15 - (1/200) 1000

W = 10

Finally, the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers

7 0
3 years ago
I don't get this stuff!!! help me!!!
Harrizon [31]
The answer is A.) igneous rocks
8 0
3 years ago
Other questions:
  • Which statements best characterize conductors? Check all that apply.
    15·2 answers
  • PLEASE HELP WILL GIVE BRAINLIEST!!!!!!!!!
    7·2 answers
  • A motorcycle of mass 250 kg drives around a circle with a centripetal acceleration of 3.4 m/s2. What is the centripetal force ac
    14·2 answers
  • 25 POINTS
    13·2 answers
  • Boltzmann’s constant is 1.38066 × 10−23 J/K, and the universal gas constant is 8.31451 J/K · mol.
    13·1 answer
  • The graph shows a wave that oscillates with a frequency of 60 Hz. Based on the information given in the diagram, what is the spe
    6·1 answer
  • Differentiate between rest and motion.
    14·1 answer
  • 6. Total current in a parallel circuit is equal to ?
    10·1 answer
  • What are possible units for impulse? Check all that apply.
    13·1 answer
  • Which statement best describes the energy of activation?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!