Answer:
![a_{r} = 1006.382g \,\frac{m}{s^{2}}](https://tex.z-dn.net/?f=a_%7Br%7D%20%3D%201006.382g%20%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D)
Explanation:
Let suppose that centrifuge is rotating at constant angular speed, which means that resultant acceleration is equal to radial acceleration at given radius, whose formula is:
![a_{r} = \omega^{2}\cdot R](https://tex.z-dn.net/?f=a_%7Br%7D%20%3D%20%5Comega%5E%7B2%7D%5Ccdot%20R)
Where:
- Angular speed, measured in radians per second.
- Radius of rotation, measured in meters.
The angular speed is first determined:
![\omega = \frac{\pi}{30}\cdot \dot n](https://tex.z-dn.net/?f=%5Comega%20%3D%20%5Cfrac%7B%5Cpi%7D%7B30%7D%5Ccdot%20%5Cdot%20n)
Where
is the angular speed, measured in revolutions per minute.
If
, the angular speed measured in radians per second is:
![\omega = \frac{\pi}{30}\cdot (3000\,rpm)](https://tex.z-dn.net/?f=%5Comega%20%3D%20%5Cfrac%7B%5Cpi%7D%7B30%7D%5Ccdot%20%283000%5C%2Crpm%29)
![\omega \approx 314.159\,\frac{rad}{s}](https://tex.z-dn.net/?f=%5Comega%20%5Capprox%20314.159%5C%2C%5Cfrac%7Brad%7D%7Bs%7D)
Now, if
and
, the resultant acceleration is then:
![a_{r} = \left(314.159\,\frac{rad}{s} \right)^{2}\cdot (0.1\,m)](https://tex.z-dn.net/?f=a_%7Br%7D%20%3D%20%5Cleft%28314.159%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Ccdot%20%280.1%5C%2Cm%29)
![a_{r} = 9869.588\,\frac{m}{s^{2}}](https://tex.z-dn.net/?f=a_%7Br%7D%20%3D%209869.588%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D)
If gravitational acceleration is equal to 9.807 meters per square second, then the radial acceleration is equivalent to 1006.382 times the gravitational acceleration. That is:
![a_{r} = 1006.382g \,\frac{m}{s^{2}}](https://tex.z-dn.net/?f=a_%7Br%7D%20%3D%201006.382g%20%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D)