Answer: 3.5 seconds
EXPLANATION:
Using the formula:
v = u + at
And taking the upwards direction as positive, we have the following information:
u = 35 m/s
a = -10m/s^2 (this is acceleration due to gravity)
At the top of its path, the apple will have a velocity of 0 m/s, therefore:
v = 0m/s
Once you substitute everything into the formula, you get:
0 = 35 + (-10)t
Therefore, t = 35/10 = 3.5 seconds
Explanation:
It is given that,
A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.
In 2 seconds, distance covered by the mass is 12 cm.
In 1 seconds, distance covered by the mass is 6 cm
So, in 16 seconds, distance covered by the mass is 96 cm
So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.
Answer:
2452.79432 m/s
Explanation:
m = Mass of ice
= Latent heat of steam
= Specific heat of water
= Latent heat of ice
v = Velocity of ice
= Change in temperature
Amount of heat required for steam

Heat released from water at 100 °C

Heat released from water at 0 °C

Total heat released is

The kinetic energy of the bullet will balance the heat

The velocity of the ice would be 2452.79432 m/s
Surface miners work aboveground. (Apex) ^-^