Answer:
in 13.95 years the senior class will have 100 students.
Step-by-step explanation:
P(h) = p(0.92)^t (equation for exponential change)
P(h) - population of highschool (or senior class) = 100
p - staring amount = 320
t = time in years
100 = 320(0.92)^t
1/3.2 = .92^t (divide both sides by 320)
log(1/3.2, .92) = t (log base 0.92 of 1/3.2 equals t)
13.9497 = t
You just flip each of the numbers spots - the x and y
Answer:
see explanation
Step-by-step explanation:
the equation of parabola in vertex form is
y = a(x - h)² + k
where (h, k ) are the coordinates of the vertex and a is a multiplier.
here (h, k ) = (3, 1 ) , then
y = a(x - 3)² + 1
to find a substitute any other point on the graph into the equation.
using (0, 7 )
7 = a(0 - 3)² + 1 ( subtract 1 from both sides )
6 = a(- 3)² = 9a ( divide both sides by 9 )
=
= a
y =
(x - 3)² + 1 ← in vertex form
------------------------------------------------------
the equation of a parabola in factored form is
y = a(x - a)(x - b)
where a, b are the zeros and a is a multiplier
here zeros are - 1 and 3 , the factors are
(x - (- 1) ) and (x - 3), that is (x + 1) and (x - 3)
y = a(x + 1)(x - 3)
to find a substitute any other point that lies on the graph into the equation.
using (0, - 3 )
- 3 = a(0 + 1)(0 - 3) = a(1)(- 3) = - 3a ( divide both sides by - 3 )
1 = a
y = (x + 1)(x - 3) ← in factored form
0.9 x 10^4
Let’s break this down into steps.
So to start off with, you need to do 4.5/5 which = 0.9.
Now we can deal with the indices. 10^-3 / 10^-7 means we have to subtract them. Therefore, -3 - -7 = 4. Altogether, we have 0.9 x 10^4
The question states we should leave our answer in standard form.
So our answer is 0.9 x 10^4.