Answer:
As the temperature decreases, the peak of the black-body radiation curve moves to lower intensities and longer wavelengths. The black-body radiation graph is also compared with the classical model of Rayleigh and Jeans.
So as you see the wavelengths are in the x axis so all wavelengths are covered.
Black-body radiation provides insight into the thermodynamic equilibrium state of cavity radiation. If each Fourier mode of the equilibrium radiation in an otherwise empty cavity with perfectly reflective walls is considered as a degree of freedom capable of exchanging energy, then, according to the equipartition theorem of classical physics, there would be an equal amount of energy in each mode. Since there are an infinite number of modes this implies infinite heat capacity (infinite energy at any non-zero temperature), as well as an unphysical spectrum of emitted radiation that grows without bound with increasing frequency, a problem known as the ultraviolet catastrophe. Instead, in quantum theory the occupation numbers of the modes are quantized, cutting off the spectrum at high frequency in agreement with experimental observation and resolving the catastrophe. The study of the laws of black bodies and the failure of classical physics to describe them helped establish the foundations of quantum mechanics.
The above explains why the classical assumptions lead to a wrong spectrum.
Explanation:
i don't know if It helps you..parang Ang layo naman Ng sagot ko sa tanong mo
Answer:
True
Explanation:
A wave is generated as a result of oscillations which creates disturbances in the medium and these disturbances termed as waves propagates or travels from one point to another.
Waves can be classifies as:
Mechanical waves which requires material medium for their propagation
Electromagnetic waves which do not require any material medium to propagate.
A wave travels at a specific velocity depending on the type of the medium in which it propagates.
Answer:
b
c
e
h
Explanation:
Note that the swing direction was not giving in the question and direction could be sideways (in a turn) or in a track or both
The question show something in common ...acceleration
So let's look at the statements and pick the correct ones
a is false while b is correct as the train is accelerating
c is correct. The train is accelerating even thou the speed could not be ascertained
d is false and not feasible as the train is accelerating
e is true as the train maybe moving at a constant speed in a circle
f is false. This could be constant velocity in a circle. Same as g (false)
h is true. It's accelerating
Answer:
For example, a wave with a time period of 2 seconds has a frequency of
1 ÷ 2 = 0.5 Hz.
Explanation:
Answer:


Explanation:
<u>Net Force And Acceleration
</u>
The Newton's second law relates the net force applied on an object of mass m and the acceleration it aquires by

The net force is the vector sum of all forces. In this problem, we are not given the magnitude of each force, only their angles. For the sake of solving the problem and giving a good guide on how to proceed with similar problems, we'll assume both forces have equal magnitudes of F=40 N
The components of the first force are


The components of the second force are


The net force is


The magnitude of the net force is


The acceleration has a magnitude of



The direction of the acceleration is the same as the net force:

