Answer:
See the answers below
Explanation:
In this problem, we must be clear about the concept of weight. Weight is defined as the product of mass by gravitational acceleration.
We must be clear that the mass is always preserved, that is, the mass of 15 [kg] will always be the same regardless of the planet where they are.
where:
W = weight [N] (units of Newtons)
m = mass = 15 [kg]
g = gravity acceleration [m/s²]
Since we have 9 places with different gravitational acceleration, then we calculate the weight in each of these nine places.
<u>Mercury</u>
<u /><u />
<u>Venus</u>
<u /><u />
<u>Moon</u>
<u /><u />
<u>Mars</u>
<u>Jupiter</u>
<u /><u />
<u>Saturn</u>
<u /><u />
<u>Uranus</u>
<u /><u />
<u>Neptune</u>
<u /><u />
<u>Pluto</u>
<u /><u />
Answer:
1.312 x 10⁻¹² J/nucleon
Explanation:
mass of ¹³⁶Ba = 135.905 amu
¹³⁶Ba contain 56 proton and 80 neutron
mass of proton = 1.00728 amu
mass of neutron = 1.00867 amu
mass of ¹³⁶Ba = 56 x 1.00728 amu + 80 x 1.00867 amu
= 137.10128 amu
mass defect = 137.10128 - 135.905
= 1.19628 amu
mass defect = 1.19628 x 1.66 x 10⁻²⁷ Kg
= 1.9858 x 10⁻²⁷ Kg
speed of light = 3 x 10⁸ m/s
binding energy,
E = mass defect x c²
E = 1.9858 x 10⁻²⁷ x (3 x 10⁸)²
E = 17.87 x 10⁻¹¹ J/atom
now,
binding energy per nucleon =
= 0.1312 x 10⁻¹¹ J/nucleon
= 1.312 x 10⁻¹² J/nucleon
Nuclear energy is EXTREMELY ecofriendly, punching down any fossil fuels and even wind energy. It also is reliable, and has low emissions. However, nuclear energy is somewhat expensive and can go wrong, being dangerous to the environment and people. Along with this, uranium is finite and radioactive waste disposal is really bad.
The three main parts of an atom are protons, neutrons<span>, and </span>electrons<span>. </span>Protons<span> - have a positive charge, located in the </span>nucleus<span>, </span>Protons<span> and </span>neutrons<span> have nearly the same mass while </span>electrons<span> are much less massive. </span>Neutrons<span>- Have a negative charge, located in the </span><span>nucleus</span>
Explanation:
using the formula: S=ut+½gt², where u=0, S=?, g=8m/s², t=10seconds.
S=ut+½gt² ("ut" term will cancel because u=0).
=> S= ½gt²
=>S = ½×8×10²
=>S = 4×100
=>S = 400m .
Therefore, the distance traveled by the body in 10s is 400m.
hope this helps you.