Step-by-step explanation:
Because the length of ST is calculated using pythagorean theorem:

Where the square of the hypotenuse is equal to the sum of squares of the other two sides of a right triangle. In this case, the hypotenuse is ST and the other two sides are distances between S and T over the X and Y axis. Those are easily calculated:

Where x is the distance between S and T over X axis and Y distance over Y axis, sx and tx are X coordinates of S and T, sy and ty are Y coordinates of S and T.
Using that formula, you get that y = 17 and x = 8.
Back to the pythagorean theorem, if we put those number in the formula of the pythagorean theorem, we get something like this:

And finally, the correct answer is in fact 353.
What is the upper quartile, Q3, of the following data set? 54, 53, 46, 60, 62, 70, 43, 67, 48, 65, 55, 38, 52, 56, 41
scZoUnD [109]
The original data set is
{<span>54, 53, 46, 60, 62, 70, 43, 67, 48, 65, 55, 38, 52, 56, 41}
Sort the data values from smallest to largest to get
</span><span>{38, 41, 43, 46, 48, 52, 53, 54, 55, 56, 60, 62, 65, 67, 70}
</span>
Now find the middle most value. This is the value in the 8th slot. The first 7 values are below the median. The 8th value is the median itself. The next 7 values are above the median.
The value in the 8th slot is 54, so this is the median
Divide the sorted data set into two lists. I'll call them L and U
L = {<span>38, 41, 43, 46, 48, 52, 53}
U = {</span><span>55, 56, 60, 62, 65, 67, 70}
they each have 7 items. The list L is the lower half of the sorted data and U is the upper half. The split happens at the original median (54).
Q3 will be equal to the median of the list U
The median of U = </span>{<span>55, 56, 60, 62, 65, 67, 70} is 62 since it's the middle most value.
Therefore, Q3 = 62
Answer: 62</span>
Answer:
The answer is A x=-6
Step-by-step explanation:
2/3 times -6 = -4.
-4+5=1