
Let's evaluate ~
The given expression is :

plug the value of x as 3



Therefore, the required value is 20
Answer:
The dimensions are:
by 
Step-by-step explanation:
The area of the rectangle is given as

The factored form of this quadratic trinomial gives the dimensions of the rectangle.
We factor 3 first to obtain;

We split the middle term to get;

We factor within the parenthesis to get;

We factor further to get;

The dimensions are:
by 
Then the perimeter will be

Answer:
983,700,000
Step-by-step explanation:
plz mark helpful, give 5 str, and mark brailliest!!! thx!
Answer:
Final answer is
.
Step-by-step explanation:
Given problem is
.
Now we need to simplify this problem.
![\sqrt[3]{x}\cdot\sqrt[3]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D)
Apply formula
![\sqrt[n]{x^p}\cdot\sqrt[n]{x^q}=\sqrt[n]{x^{p+q}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5Ep%7D%5Ccdot%5Csqrt%5Bn%5D%7Bx%5Eq%7D%3D%5Csqrt%5Bn%5D%7Bx%5E%7Bp%2Bq%7D%7D)
so we get:
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=\sqrt[3]{x^{1+2}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3D%5Csqrt%5B3%5D%7Bx%5E%7B1%2B2%7D%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=\sqrt[3]{x^{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3D%5Csqrt%5B3%5D%7Bx%5E%7B3%7D%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3Dx)
Hence final answer is
.
Answer:
• 2/3|2 -x| = 1/15
• |2 -x| = 1/10
• 1/5 +|4/3 -2/3x| = 4/15
Step-by-step explanation:
Starting with the given equation, subtract 1/5 = 3/15.
(2/3)|2 -x| = 4/15 - 3/15
(2/3)|2 -x| = 1/15 . . . . . . . . matches the first choice
Now, multiply by 3/2.
|2 -x| = 3/30
|2 -x| = 1/10 . . . . . . . . . . . . matches the third choice
___
If you decide to distribute the coefficient 2/3 instead, you have
1/5 + |2·2/3 -x·2/3| = 4/15
1/5 + |4/3 -2/3x| = 4/15 . . . . matches the selected choice