Answer:
A. Vx = 3.63 m/s
B. Vy = -45.73 m/s
C. |V| = 45.87 m/s
D. θ = -85.46°
Explanation:
Given that position, r, is given as:
r = 3.63tˆi − 5.73t^2ˆj + 8.16ˆk
Velocity is the derivative of position, r:
V = dr/dt = 3.63 - 11.46t^j
A. x component of velocity, Vx = 3.63 m/s
B. y component of velocity, Vy = -11.46t
t = 3.99 secs,
Vy = - 11.46 * 3.99 = -45.73 m/s
C. Magnitude of velocity, |V| = √[(-45.73)² + 3.63²]
|V| = √(2091.2329 + 13.1769)
|V| = √(2104.4098)
|V| = 45.87 m/s
D. Angle of the velocity relative to the x axis, θ is given as:
tanθ = Vy/Vx
tanθ = -45.73/3.63
tanθ = -12.6
θ = -85.46°
Answer:
2.89 x 10^6 N
Explanation:
The explanation is shown in the picture attached
Answer:
a ) = 381.48 J
b )= 84.25 cm
Explanation:
Kinetic energy of the runner
= 1/2 m v²
= .5 x 66 x 3.4²
= 381.48 J
The final kinetic energy of the runner is zero .
Loss of mechanical energy
= 381.48 J
This loss in mechanical energy is due to action of frictional force .
b )
Let s be the distance of slide
deceleration due to frictional force
= μmg/m
.7 x 66 x 9.8 / 66
a = - 6.86 m s⁻¹
v² = u² - 2 a s
0 = 3.4² - 2x6.86 s
s = 3.4² / 2x6.86
= .8425 m
84.25 cm