Answer
Together with glycolysis, The Krebs cycle, and the electron transport chain release about 36 molecules of ATP per molecule of glucose.The Krebs cycle uses the two molecules of pyruvic acid formed in glycolysis and yields high-energy molecules of NADH and flavin adenine dinucleotide (FADH2), as well as some ATP. The electron transport chain forms a proton gradient across the inner mitochondrial membrane, which drives the synthesis of ATP
<h2>
Hello!</h2>
The answer is:
The first option, the walker traveled 360m more than the actual distance between the start and the end points.
Why?
Since each block is 180 m long, we need to calculate the vertical and the horizontal distance, in order to calculate how farther did the travel walk between the start and the end points (displacement).
So, calculating we have:
Traveler:


Actual distance between the start and the end point (displacement):

Now, to calculate how much farter did the traveler walk, we need to use the following equation:

Therefore, we have that distance differnce between the distance covered by the walker and the actual distance is 360m.
Hence, we have that the walker traveled 360m more than the actual distance between the start point and the end point.
Have a nice day!
It’s coming in contact with more air molecules than I would if it was in a ball because there is less surface area
D is the answer. It is a firm statement.
Answer:
minimum frequency = 170 Hz
Explanation:
given data
One path long = 20 m
second path long = 21 m
speed of sound = 340 m/s
solution
we get here destructive phase that is path difference of minimum
here λ is the wavelength of the wave
so path difference will be
21 - 20 =
λ = 2 m
and
velocity that is express as
velocity = frequency × wavelength .............1
frequency =
minimum frequency = 170 Hz