Answer:
Explanation:
The magnitude of the acceleration makes an angle of 30° with the tangential velocity.
Resolving the acceleration to tangential and radial acceleration
at = aCos30 = √3a/2
ar = aSin30 = ½a
a = 2•ar
Then, the tangential acceleration is the linear acceleration, so the relationship between the tangential acceleration and angular acceleration is given as:
at = Rα
Then, α = at/R
since at = √3a/2
Then, α = √3 at/2R, equation 1
The radial acceleration is given as
ar = ω²R
Note that, at² + ar² = a²
at = √(a²-ar²)
Back to equation 1
α = √3 at/2R
α = √3√(a²-ar²)/2R
α = √3√(a²-(w²R)²)/2R
α = √3(a²-w⁴R²) / 2R
Also, a = 2•ar = 2w²R
Then,
α = √3((2w²R)²-w⁴R²) / 2R
α = √3(4w⁴R²-w⁴R²) / 2R
α = √3(3w⁴R²) / 2R
α = √9w⁴R² / 2R
α = 3w²R / 2R
α = 3w²/2
Answer:
According to studies, the milky way is approximately, "170,000–200,000 light-years (52–61 kpc) in diameter and, on average, approximately 1,000 ly (0.3 kpc) thick."
With that being said, it is safe to say that the dimensions are somewhere around 100,000 by 1,000
Answer:
1980 kg m/s due south
8.2 m/s2 north-west
Explanation:
In order a quantity to be a vector, it should both has a magnitude and direction.
27 J/s --> Only magnitude. (Power)
1980 kg m/s due south --> Both magnitude and direction. (Momentum)
8.2 m/s2 north-west --> Both magnitude and direction. (Acceleration)
3.2 mi straight up --> Direction is not clear. (Position)
2.9 m/s2 --> Only magnitude. (Magnitude of acceleration)
293 K --> Only magnitude. (Temperature)
200 s --> Only magnitude. (Time)