I good accumulator to use would be symbolab.com
The answer would be 3072/5629
Answer:
LESS the seventeen
Step-by-step explanation:
<u>Answer-</u>
![\boxed{\boxed{\text{Mass}=10.0447256\ ton}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Ctext%7BMass%7D%3D10.0447256%5C%20ton%7D%7D)
<u>Solution-</u>
The dimensions of the cuboid is, 80×80×140 cm
So, its volume will be
cm³
The dimensions of the cylinder is, radius = 40cm, height = 70cm
So, its volume will be
cm³
Total volume,
![V=V_{\text{Cylinder}}+V_{\text{Cuboid}}\\\\=351792+896000\\\\=1247792\ cm^3](https://tex.z-dn.net/?f=V%3DV_%7B%5Ctext%7BCylinder%7D%7D%2BV_%7B%5Ctext%7BCuboid%7D%7D%5C%5C%5C%5C%3D351792%2B896000%5C%5C%5C%5C%3D1247792%5C%20cm%5E3)
As we know,
![\Rightarrow \text{Density}=\dfrac{\text{Mass}}{\text{Volume}}](https://tex.z-dn.net/?f=%5CRightarrow%20%5Ctext%7BDensity%7D%3D%5Cdfrac%7B%5Ctext%7BMass%7D%7D%7B%5Ctext%7BVolume%7D%7D)
![\Rightarrow \text{Mass}=\text{Density}\times \text{Volume}](https://tex.z-dn.net/?f=%5CRightarrow%20%5Ctext%7BMass%7D%3D%5Ctext%7BDensity%7D%5Ctimes%20%5Ctext%7BVolume%7D)
![\Rightarrow \text{Mass}=8.05\times 1247792=10044725.6\ g](https://tex.z-dn.net/?f=%5CRightarrow%20%5Ctext%7BMass%7D%3D8.05%5Ctimes%201247792%3D10044725.6%5C%20g)
![\Rightarrow \text{Mass}=10044725.6\times 10^{-6}=10.0447256\ ton](https://tex.z-dn.net/?f=%5CRightarrow%20%5Ctext%7BMass%7D%3D10044725.6%5Ctimes%2010%5E%7B-6%7D%3D10.0447256%5C%20ton)
5in : 200mi
7in : xmi
One inch represents 40 miles.
7 * 40 miles = 280 miles.
The two cities are 280 miles apart.
Answer:
Option 4. x = 0
Step-by-step explanation:
we know that
The rule of the reflection of a point across the y-axis is equal to
(x,y) -----> (-x,y)
The rule for reflecting over the Y axis is to negate the value of the x-coordinate of each point, but leave the y-value the same
The coordinates of triangle PQR are
P(1, 4), Q(3, 6), and R(5, 2)
Applying the rule of the reflection across the y-axis we have
P(1, 4) -----> P'(-1, 4)
Q(3, 6) ----> Q'(-3, 6)
R(5, 2)----> R'(-5, 2)
The reflection line is the y-axis
Remember that the equation of the y-axis is x=0
therefore
The equation of the reflection line is x=0