There are a few ways to do this- unfortunately different fields are better at it than others! Medical research is generally pretty good, some other fields likewise very good, some not as much.
Basically, though, what they do is use standadisation- they agree on the terminology, units of data, statistical measures, and so forth, that will be used in that scientific field. As much as possible, every scientist in the field uses those standards so everyone working in the field should recognise it.
For instance, in clinical trials, there is very good agreement worldwide on what the different metrics we use are- e.g. in cancer research, we usually want to know the 5-year survival rate (meaning the percentage of patients still alive 5 years after diagnosis). So anyone with the right training should be able to pick up a clinical trial report and understand what the results are and what the report is saying.
The boat is initially at equilibrium since it seems to start off at a constant speed of 5.5 m/s. If the wind applies a force of 950 N, then it is applying an acceleration <em>a</em> of
950 N = (2300 kg) <em>a</em>
<em>a</em> = (950 N) / (2300 kg)
<em>a</em> ≈ 0.413 m/s²
Take east to be positive and west to be negative, so that the boat has an initial velocity of -5.5 m/s. Then after 11.5 s, the boat will attain a velocity of
<em>v</em> = -5.5 m/s + <em>a</em> (11.5 s)
<em>v</em> = -0.75 m/s
which means the wind slows the boat down to a velocity of 0.75 m/s westward.
Uniformly around the globe. it is mostly found in earths atmosphere.
In general,
Power = (energy moved) / (time to move the energy) .
If it's mechanical power, then
Power = (work done) / (time to do the work) .
If it's electrical power, then it can be any one of these:
Power = (volts) x (amperes)
Power = (volts)² / (resistance, ohms)
Power = (amperes)² x (resistance, ohms) .
Whatever kind of energy you're dealing with, power always
turns out to be
(amount of energy produced, used, or moved)
divided by
(time taken to produce, use, or move the energy) .