A shadow forms on the side of an object that faces away from the sun. The length of shadows changes as Earth rotates. In the morning, the sun is low in the eastern sky and shadows are long. As time passes in the morning, the sun seems to move higher in the sky.
Answer:
The car's angular speed is
.
Explanation:
Angular velocity is usually measured with
, so I'm going to use that to answer your question.
The relationship between tangential velocity and angular velocity (ω) is given by:

Using the values from the question, we get:


Therefore, the car's angular speed is
.
Hope this helped!
Answer:
Gold is more dense.
Gold sinks faster than lead. That's why gold is found in the bottom of a gold pan or river.
Newton’s first law is commonly stated as:
An object at rest stays at rest and an object in motion stays in motion.
However, this is missing an important element related to forces. We could expand it by stating:
An object at rest stays at rest and an object in motion stays in motion at a constant speed and direction unless acted upon by an unbalanced force.
By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it will simply slow down or stop. Right?
This, of course, is not true. In the absence of any forces, no force is required to keep an object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down because of air resistance (a force). An object’s velocity will only remain constant in the absence of any forces or if the forces that act on it cancel each other out, i.e. the net force adds up to zero. This is often referred to as equilibrium. The falling ball will reach a terminal velocity (that stays constant) once the force of air resistance equals the force of gravity.
Hope this help