D. A disadvantage of nuclear power is that waste products are unsafe and hard to store. They must be stored for many hundreds of years before they becomes safe and easier to dispose of, and we currently don't have a good method of storing them in the meantime.
To get moles. divide mass by molar mass.Molar mass of
Na is 23
and for Cl is 35.5.
the total molar mass of NaCl is 23+35.5 = 58.5mol/gUse the mass and divide by this number30.22g divide by 58.5mol/g and you will get 0.5166 mole.
Since the molecule has 1 Na to 1 Cl, and that the number of moles for NaCL is 0.5166. All of them would be 0.5166molesNa = 0.5166 x 1 = 0.5166molesCl = 0.5166 x 1 = 0.5166moles
to get number of atoms. Multiply your mole by Avogadro number which is 6.022x10^23Na = 0.5166 x 6.022E23 = 3.111x10^23Cl = 0.5166 x 6.022E23 = 3.111x10^23
Electron
~~~hope this helps~~~
~~have a beautiful day~~
~davatar~
The volume of the 0.15 M LiOH solution required to react with 50 mL of 0.4 M HCOOH to the equivalence point is 133.3 mL
<h3>Balanced equation </h3>
HCOOH + LiOH —> HCOOLi + H₂O
From the balanced equation above,
The mole ratio of the acid, HCOOH (nA) = 1
The mole ratio of the base, LiOH (nB) = 1
<h3>How to determine the volume of LiOH </h3>
- Molarity of acid, HCOOH (Ma) = 0.4 M
- Volume of acid, HCOOH (Va) = 50 mL
- Molarity of base, LiOH (Mb) = 0.15 M
- Volume of base, LiOH (Vb) =?
MaVa / MbVb = nA / nB
(0.4 × 50) / (0.15 × Vb) = 1
20 / (0.15 × Vb) = 1
Cross multiply
0.15 × Vb = 20
Divide both side by 0.15
Vb = 20 / 0.15
Vb = 133.3 mL
Thus, the volume of the LiOH solution needed is 133.3 mL
Learn more about titration:
brainly.com/question/14356286