Answer is: 127 grams <span>rams of metallic copper can be obtained.
</span>Balanced chemical reaction: 2Al + 3CuSO₄ → Al₂(SO₄)₃ + 3Cu.
m(Al) = 54.0 g.
n(Al) = m(Al) ÷ M(Al).
n(Al) = 54 g ÷ 27 g/mol.
n(Al) = 2 mol.
m(CuSO₄) = 319 g.
n(CuSO₄) = 319 g ÷ 159.6 g/mol.
n(CuSO₄) = 2 mol; limiting reactant.
From chemical reaction: n(CuSO₄) : n(Cu) = 3 : 3 (1 : 1).
n(Cu) = 2 mol.
n(Cu) = 2 mol · 63.55 g/mol.
n(Cu) = 127.1 g.
The metalloids are Boron, Silicon, Geranium, etc and are found to the right of the metals and the left of the nonmetals. Since that is not an option, the best choice would be: The metalloids are located below nonmetals and above metals within a group.
The difference between a mixture and a compound is that a mixture can be easily separated like a salad where you can pick things out and a compounds you are usually not able to undo