Answer:
me too
Step-by-step explanation:
Answer:
Step-by-step explanation:
I'm assuming you meant to type in
because you can only have removable discontinuities where there is a rational (fraction) function. Begin by factoring both the numerator and denominator to
and cancelling out like terms would have us eliminating the (x + 3). That is where there is a removable discontinuity. It leaves a hole. The other discontinuity, (x + 1) doesn't cancel out so it is a non-removable discontuinity, which is a vertical asymptote.
The removable discontinuity is at -3. There is no y value at x = -3 (remember there's only a hole here), because -3 causes the denominator to go to 0 and we all know that having a 0 in the denominator of a fraction is a big no-no!!!
Answer: Option A

Step-by-step explanation:
In the graph we have a piecewise function composed of a parabola and a line.
The parabola has the vertex in the point (0, 2) and cuts the y-axis in y = 2.
The equation of this parabola is
Then we have an equation line
Note that the interval in which the parabola is defined is from -∞ to x = 1. Note that the parabola does not include the point x = 1 because it is marked with an empty circle " о ."
(this is
)
Then the equation of the line goes from x = 1 to ∞ . In this case, the line includes x = 1 because the point at the end of the line is represented by a full circle
.
(this is
)
Then the function is:
