Answer: 0.0220275 M
Explanation:
So, we are given the following data or parameters which are going to help in solving this particular Question/problem.
=> Averagely, we have the volume = 5.0 L of blood in human body .
=> Mass of sugar eaten = 37.7 g of sugar (sucrose, 342.30 g/mol).
Therefore, the molarity of the blood sugar change can be calculated as below:
The molarity of the blood sugar change = (1/ volume) × mass/molar mass.
Thus, the molarity of the blood sugar change = (1/5) × 37.7/342.30 = 0.0220275 M.
Answer:
Fe₂O₃ and C are reactants
Fe and CO₂ are products
Explanation:
Reactants:
Chemical species that are present on left side of chemical reaction equation are called reactants.
Product:
Chemical species that are present on right side of chemical reaction equation are called product.
Chemical equation:
2Fe₂O₃ + 3C → 4Fe + 3CO₂
In this reaction 2 mole of iron oxide is react with three moles of carbon and produced four moles of iron and three moles of carbon dioxide. There are equal numbers of atoms of all elements present on both side of chemical reaction so this reaction follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Answer:
The answer to your question is: V2 = 1.94 l
Explanation:
Data
V1 = 2.42 l
T1 = 25°C
P1 = 1 atm
V2 = ?
T2 = 25 -11 = 14°C
P2 = 1(0.7) = 0.7 atm
Formula
P1V1/T1 = P2V2/T2
Clear V2 from the equation
V2 = P1V1T2/ P2T1
V2 = (1)((2.42)(14) / (0.7)(25)
V2 = 33.88 / 17.5
V2 = 1.94 l
Your answer would be they have mobile ions in solution.
"Carbon" is an element. It is found in the fourth group of the periodic table, and it is a stable element. This means that it can not be decomposed via heating, because if an element were to break down, it would release its subatomic particles. The explanation was probably one used to describe the thermal decomposition of a compound into smaller compounds.