Answer:
59.077 kJ/mol.
Explanation:
- From Arrhenius law: <em>K = Ae(-Ea/RT)</em>
where, K is the rate constant of the reaction.
A is the Arrhenius factor.
Ea is the activation energy.
R is the general gas constant.
T is the temperature.
- At different temperatures:
<em>ln(k₂/k₁) = Ea/R [(T₂-T₁)/(T₁T₂)]</em>
k₂ = 3k₁ , Ea = ??? J/mol, R = 8.314 J/mol.K, T₁ = 294.0 K, T₂ = 308.0 K.
ln(3k₁/k₁) = (Ea / 8.314 J/mol.K) [(308.0 K - 294.0 K) / (294.0 K x 308.0 K)]
∴ ln(3) = 1.859 x 10⁻⁵ Ea
∴ Ea = ln(3) / (1.859 x 10⁻⁵) = 59.077 kJ/mol.
Answer:
It is decomposition synthesis Combustion.
Explanation:
It is used to produce dinitrogen monoxide and water. The reaction usually takes place in a place in a temperature of 200-260 degrees Celsius.
Answer:
The question is incomplete as some details are missing. Here is the complete question ; A chemist adds 45.0mL of a 0.434M copper(II) sulfate CuSO4 solution to a reaction flask. Calculate the mass in grams of copper(II) sulfate the chemist has added to the flask. Round your answer to 2 significant digits
Explanation:
The step by step explanation is as shown in the attachment
Answer:
Electrical force can pull and push
Explanation: