X² + x - 12 / x² - x - 20 ÷ 3x² - 24x + 45 / 12x² - 48x - 60
x² + x - 12 / x² - x - 20 * 12x² - 48x - 60 / 3x² - 24x + 45
<u>(x² + x - 12)(12x² - 48x - 60)</u>
(x² - x - 20)(3x² - 24x + 45)
<span><u>12x^4 - 48x³ - 60x² + 12x³ - 48x² - 60x - 144x² + 576x + 720</u>
</span>3x^4 - 24x³ + 45x² - 3x³ + 24x² - 45x - 60x² + 480x - 900
<span>
<u>12x^4 - 48x³ + 12x³ - 60x² - 48x² - 144x² - 60x + 576x + 720</u></span>
3x^4 - 24x³ - 3x³ + 45x² + 24x² - 60x² - 45x + 480x - 900
<u>12x^4 - 36x³ - 252x² + 516x + 720</u>
3x^4 - 27x³ + 9x² + 435x - 900
<u>12(x^4 - 3x³ - 21x² + 43x + 60) </u>
3(x^4 - 9x³ + 3x² + 145x + 300)
<u>4(</u><span><u>x^4 - 3x³ - 21x² + 43x + 60) </u>
</span><span> (x^4 - 9x³ + 3x² + 145x + 300)</span>
Answer:
x = 7
Step-by-step explanation:
5x - 2 + x = 9 + 3x + 10
6x - 2 = 9 + 3x + 10
6x - 2 = 3x + 19
6x = 3x + 21
3x = 21
x = 7
The ratio of building heights will be the same as the ratio of shadow lengths.
(taller building)/(shorter building) = (longer shadow)/(shorter shadow)
(taller building)/(84 ft) = (110 ft)/(46 ft) . . . . . . fill in the given numbers
(taller building) = (84 ft)*(110/46) ≈ 200.9 ft . . multiply by 84 ft, evaluate
The appropriate selection is
D) 200.9 ft
Answer:
a
Step-by-step explanation: