Answer:
A, C, and D
Explanation:
The correct options that apply to the principal conservation of energy are A, C, and D.
A is correct because energy can neither be created nor destroyed. However, energy can be transfered from one location to another or be converted from one form to another. <em>Whether transferred to converted, the magnitude remains the same.</em>
C is correct because energy cannot be destroyed but can be transferred or converted. <em>Hence, if a body or a location loses temprature, then the loss is being gained by another body or location.</em>
D is also correct. A closed system is a system that does not exchange matter with its surroundings. <em>Hence, the total energy remains the same within the system. </em>
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium shifts to counteract the change to reestablish equilibrium. If a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. This page covers changes to the position of equilibrium due to such changes and discusses briefly why catalysts have no effect on the equilibrium position.
For example, if the system is changed in a way that increases the concentration of one of the reacting species, it must favor the reaction in which that species is consumed. In other words, if there is an increase in products, the reaction quotient, Qc, is increased, making it greater than the equilibrium constant, Kc.
The formula that can be applied in this problem is W = Fd
where W is work, F is the force and d is distance. You have 450N and 3m, all
you have to do is to multiply it.
W = Fd
W = (450N) (3m)
W = 1350J
The answer is letter C.
Answer:
all atoms must have 6 protons to be a carbon atom
Explanation:
brainliest?