Answer:
Engines can overheat for many reasons. In general, it's because something's wrong within the cooling system and heat isn't able to escape the engine compartment. The source of the issue could include a cooling system leak, faulty radiator fan, broken water pump, or clogged coolant hose.
Explanation:
HOPE IT WILL HELP U
what do u need help with u pls respond quickly
The formula we can use here is the Plancks equation:
E = h c / ʎ
where h is Plancks constant = 6.626 × 10-34 m2 kg / s, c
is speed of light = 3 x 10^8 m/s and ʎ is wavelength = 656.1 x 10^-9 m
Therefore E is:
E = (6.626 × 10-34 m2 kg / s)
* (3 x 10^8 m/s) / 656.1 x 10^-9 m
<span>E = 3.03 x 10^-19 J</span>
Point of the graph because it’s the point
Answer:
- <u><em>You should expect that the ionic bond in LiBr is stronger than the bond in KBr.</em></u>
<u><em /></u>
Explanation:
The<em> ionic bonds</em> are formed by the electrostatic attraction between the ions, cations and anions.
In KBr the cation is K⁺ and the anion is Br⁻.
In LiBr the cation is Li⁺ and the anion is Br⁻.
You must expect that the bond strength depends mainly on the charges present on each ion and the distance between them.
Nevertheless, the effect of the distance between the radius dominate the trendency of the bond strength, which makes that the ionic strength trend be related to the ionic radius trend.
Lithium is a smaller ion than Potassium (both are in the same group and Lithium is above Potassium).
Thus, you should expect that the Li ion is closer to the Br ion than what the K ion is to the Br ion and expect that the bond between a Li ion and the Br ion be stronger than the bond between the K ion and the Br ion.