The distance from the nucleus at which the electron is most likely to be found
Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.
A theory is a proposed explanation for an observation
The high surface tension helps the paper clip - with much higher density - float on the water. The property of the surface of a liquid that allows it to resist an external force, due to the cohesive nature of its molecules.
Basically it means that there is a sort of skin on the surface of water where the water molecules hold on tight together. If the conditions are right, they can hold tight enough to support your paper clip. The paperclip is not truly floating, it is being held up by the surface tension.
Answer:
[H₃O⁺] = 0.05 M & [OH⁻] = 2.0 x 10⁻¹³.
Explanation:
- HNO₃ is completely ionized in water as:
<em>HNO₃ + H₂O → H₃O⁺ + NO₃⁻.</em>
- The concentration of hydronium ion is equal to the concentration of HNO₃:
[H₃O⁺] = 0.05 M.
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺] </em>= 10⁻¹⁴/0.05 = <em>2.0 x 10⁻¹³.</em>