Answer:
There are two reasons why air pressure decreases as altitude increases: density and depth of the atmosphere. Most gas molecules in the atmosphere are pulled close to Earth's surface by gravity, so gas particles are denser near the surface.
Explanation:
As this happens over twelve seconds, you would take the total difference in velocities and divide it by twelve to find the change per second
44.0 m/s - 2.0 m/s = 42.0 m/s
42.0 m/s / 12 s = 3.5 m/s2
the acceleration of the rock would be 3.5 m/s2
Answer:
The correct answer is the third option: The kinetic energy of the water molecules decreases.
Explanation:
Temperature is, in depth, a statistical value; kind of an average of the particles movement in any physical system (such as a glass filled with water). Kinetic energy, for sure, is the energy resulting from movement (technically depending on mass and velocity of a system; in other words, the faster something moves, the greater its kinetic energy.
Since temperature is related to the total average random movement in a system, and so is the kinetic energy (related to movement through velocity), as the thermometer measures <u>less temperature</u>, that would mean that the particles (in this case: water particles) are <u>moving slowly</u>, so that: the slower something moves, the lower its kinetic energy.
<u>In summary:</u> temperature tells about how fast are moving and colliding the particles within a system, and since it is <em>directly proportional</em> to the amount of movement, it can be related (also <em>directly proportional</em>) to the kinectic energy.
<h2>
Answer: 13.61 N/m</h2>
Hooke's law establishes that the elongation of a spring is directly proportional to the modulus of the force applied to it, <u>as long as the spring is not permanently deformed</u>:
(1)
Where:
is the elastic constant of the spring. The higher its value, the more work it will cost to stretch the spring.
is the length of the spring without applying force.
is the length of the spring with the force applied.
According to this, we have a spring where only the force due gravity is applied.
In other words, the force applied is the weigth of the block:
(2)
Where is the mass of the block and is the gravity acceleration.
(3)
(4)
Knowing the force applied and and , we can substitute the values in equation (1) and find :
(5)
(6)
<u>Finally:</u>