His weight depends on where he is, because
Weight = (mass) x (gravity in the place where the mass is) .
For example:
-- If this man is on Mars, his weight is (110 kg) x (3.7 m/s²) = 408 Newtons
-- If he is on the Moon, his weight is (110 kg) x (1.6 m/s²) = 176 Newtons
-- If he is on Earth, his weight is (110 kg) x (9.8 m/s²) = 1,078 Newtons
-- If he is in a spacecraft coasting from one to another, his weight is zero.
1. 
Explanation:
We have:
voltage in the primary coil
voltage in the secondary coil
The efficiency of the transformer is 100%: this means that the power in the primary coil and in the secondary coil are equal

where I1 and I2 are the currents in the two coils. Re-arranging the equation, we find

which means that the current in the secondary coil is 14% of the value of the current in the primary coil.
2. 5.7 V
We can solve the problem by using the transformer equation:

where:
Np = 400 is the number of turns in the primary coil
Ns = 19 is the number of turns in the secondary coil
Vp = 120 V is the voltage in the primary coil
Vs = ? is the voltage in the secondary coil
Re-arranging the formula and substituting the numbers, we find:

Answer:
both caused by physical vibrations
Answer:
29.96m/s
Explanation:
Given parameters:
Initial speed = 25.5m/s
Acceleration = 1.94m/s²
Time = 2.3s
Unknown:
Final speed of the car = ?
Solution:
To solve this problem, we are going to apply the right motion equation:
v = u + at
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
Now insert the parameters and solve;
v = 25.5 + (1.94 x 2.3) = 29.96m/s