Indicates that the planet does not have an atmosphere. If the planet had an atmosphere is would erode away at the meteors before they hit the surface.
The molecular formula for the compound is 
<u>Explanation</u>:
As with all of these problems, we assume 100 g of an unknown compound.
And thus, we determine the elemental composition by the given percentages.
Moles of carbon = 85.64 / 12.011
= 7.13 mol.
Moles of hydrogen = 14.36 / 1.00794
= 14.25 mol.
There are 2 moles of hydrogen per mole of carbon. And thus the empirical formula is CH
.
And molecular formula = n × (empirical formula)
Thus, 42.08 = n × (12.011 + 2 × 1.00794)
And thus n = 3, and molecular formula = 
Answer is: <span>D. 327,992.8 J.
</span>m(granite) = 17 kg = 17000g.
ΔT(granite) = 21°C - 45°C = -24°C (-24K).<span>
cp(granite</span>)
= 0,804 J/g·°C, <span>specific heat capacity of
granite.
Q = m(granite</span>) · ΔT(granite) · cp(granite).<span>
Q = 17000 g ·(-24</span>°C)<span>· 0,804 J/g·K.
Q = -327990 J.
</span>The granite lost 327990 joules of energy.<span>
Q - </span>amount of energy gained or lost.<span>
</span>
To balance a chemical equation, you want the same amount of elements to equal the same on both sides.
Step1. Write equation out
[CH4 + Cl2 ---> CCl4 + HCl]
C:1; H:4; Cl:2 C:1; H:1; CL:5 /// Cl = 5 since 4Cl + 1Cl
The Carbon element is balanced, but Hydrogen isn't.
So to balance it we will add a coefficient behind HCl, so now
[CH4 + Cl2 ------> CCl4 + 4HCL]
C:1; H:4; Cl:2 C:1; H:4; CL:8 ///// Carbon and hydrogen are balanced, but now Chlorine is not. Now we balance that element by addind a coefficiant behind CL2////
[CH4 + 4Cl2 -----> CCl4 + 4HCl]
C:1; H:4; Cl:8 C:1; H:4; CL:8 ///// So now that we added a 4*Cl2, it equals to Cl:8. So now what most people want to see is if every element is at its lowest balance, so we see if we can any coefficient lower. Just like simplifying if possible.
Answer:
Electronegativity is a measure of how strongly atoms attract bonding electrons to themselves.
Its symbol is the Greek letter chi: χ
The higher the electronegativity, the greater an atom's attraction for electrons.
Below is a periodic table of electronegativity: the lighter the shade of green, the higher the electronegativity. Gray means no value is known. (Click image for larger view that shows electronegativity values.)
Explanation: