Answer: There are of gas are in a container with a volume of 9.55 mL at 35 °C and a pressure of 895 mmHg
Explanation:
According to ideal gas equation:
P = pressure of gas = 895 mm Hg= 1.18 atm (760 mm Hg= 1 atm)
V = Volume of gas = 9.55 ml = 0.00955 L (1 L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =
Thus there are of gas are in a container with a volume of 9.55 mL at 35 °C and a pressure of 895 mmHg
Since we are only asked for the number of moles, we don't need the information of density. The concentration is expressed in terms of 0.135 M AgCl or 0.135 moles of AgCl per liter solution. The solution is as follows:
Moles AgCl = Molarity * Volume
Moles AgCl = 0.135 mol/L * 244 mL * 1 L/1000 mL
<em>Moles AgCl = 0.03294 mol </em>
A less intense wave will have fewer OSCILLATING AMPLITUDE than a more intense wave.
The intensity of a wave is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. Intense sounds are characterized by the particles of the medium vibrating back and forth with large amplitude.<span />
Scientists observe the world around them, from which to draw questions. Their predictions as to the answer are what we call a “hypothesis”. Thus, a scientist’s job is to answer the very hypotheses that they and their piers come up with.