FORMULA
D ( desired dose) x V ( vehicle- tablet or liquid)
H ( dose on hand)
D = Dose ordered
H = dose on hand or dose on container label
V = form and amount in which drug comes ( tablet, capsule, liquid)
D= 50mg H= 125mg V= 5ml
50 x 5
125
250 divided by 125 = 2ml
So, 2ml of elixir is administered every 12 hours :) brainliest pls
        
                    
             
        
        
        
Answer:
The Correct Symplified ratio is 1:2
Step-by-step explanation:
 
        
             
        
        
        
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️







♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
 
        
             
        
        
        
(x^2+5x-36)/(x^2-16)
=(x^2+9x-4x-36)/(x^2-4^2)
=x(x+9)-4(x+9)/(x+4)(x-4)
=(x-4)(x+9)/(x+4)(x-4)
=x+9/x+4
Hope this helps.
        
             
        
        
        
The volume generated by rotating the given region  about OC is
 about OC is  
 
<h3>
Washer method</h3>
Because the given region ( ) has a look like a washer, we will apply the washer method to find the volume generated by rotating the given region about the specific line.
) has a look like a washer, we will apply the washer method to find the volume generated by rotating the given region about the specific line.
solution
We first find the value of x and y









![v= \pi \int\limits^2_o= [\frac{y^{2} }{4} - \frac{y^{8} }{2^{8} }}  ] dy](https://tex.z-dn.net/?f=v%3D%20%5Cpi%20%5Cint%5Climits%5E2_o%3D%20%5B%5Cfrac%7By%5E%7B2%7D%20%7D%7B4%7D%20-%20%5Cfrac%7By%5E%7B8%7D%20%7D%7B2%5E%7B8%7D%20%7D%7D%20%20%5D%20dy)
![v= \pi [\int\limits^2_o {\frac{y^{2} }{4} } \, dy - \int\limits^2_o {\frac{y}{2^{8} } ^{8} } \, dy ]](https://tex.z-dn.net/?f=v%3D%20%5Cpi%20%5B%5Cint%5Climits%5E2_o%20%7B%5Cfrac%7By%5E%7B2%7D%20%7D%7B4%7D%20%7D%20%5C%2C%20dy%20-%20%5Cint%5Climits%5E2_o%20%7B%5Cfrac%7By%7D%7B2%5E%7B8%7D%20%7D%20%5E%7B8%7D%20%7D%20%5C%2C%20dy%20%5D)
![v=\pi [\frac{1}{4} \frac{y^{3} }{3}  \int\limits^2_0 - \frac{1}{2^{8} }  \frac{y^{g} }{g} \int\limits^2_o\\v= \pi [\frac{1}{12} (2^{3} -0)-\frac{1}{2^{8}*9 } (2^{g} -0)]\\v= \pi [\frac{2}{3} -\frac{2}{g} ]\\v= \frac{4}{g} \pi](https://tex.z-dn.net/?f=v%3D%5Cpi%20%5B%5Cfrac%7B1%7D%7B4%7D%20%5Cfrac%7By%5E%7B3%7D%20%7D%7B3%7D%20%20%5Cint%5Climits%5E2_0%20-%20%5Cfrac%7B1%7D%7B2%5E%7B8%7D%20%7D%20%20%5Cfrac%7By%5E%7Bg%7D%20%7D%7Bg%7D%20%5Cint%5Climits%5E2_o%5C%5Cv%3D%20%5Cpi%20%5B%5Cfrac%7B1%7D%7B12%7D%20%282%5E%7B3%7D%20-0%29-%5Cfrac%7B1%7D%7B2%5E%7B8%7D%2A9%20%7D%20%282%5E%7Bg%7D%20-0%29%5D%5C%5Cv%3D%20%5Cpi%20%5B%5Cfrac%7B2%7D%7B3%7D%20-%5Cfrac%7B2%7D%7Bg%7D%20%5D%5C%5Cv%3D%20%5Cfrac%7B4%7D%7Bg%7D%20%5Cpi)
A similar question about finding the volume generated by a given region is answered here: brainly.com/question/3455095