Hot air rises<span> because when you </span>heat air<span> (or any other gas for that matter), it expands. When the </span>air<span> expands, it becomes less dense than the </span>air<span>around it. The less dense </span>hot air<span> then floats in the more dense cold </span>air<span> much like wood floats on water because wood is less dense than water.</span>
Lo experiences tidal heating primarily because lo’s elliptical orbit causes the tidal force on lo to vary as it orbits the Jupiter. Thus, lo’s elliptical orbit is essential to its tidal heating. This elliptical orbit, in turn, is an end result of the orbital resonance among lo, Europa and ganymade. This orbital resonance origin lo to have a more elliptical orbit than it would because lo intermittently passes Europa and ganymade in the same orbital position. We cannot perceive tidal forces of tidal heating in lo but rather we foresee that they must occur based on the orbital characteristic of the moons and active volcanoes on lo is the observational evidence that tidal heating is significant in lo.
Answer:
W = - 118.24 J (negative sign shows that work is done on piston)
Explanation:
First, we find the change in internal energy of the diatomic gas by using the following formula:

where,
ΔU = Change in internal energy of gas = ?
n = no. of moles of gas = 0.0884 mole
Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)
Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K
ΔT = Rise in Temperature = 18.8 K
Therefore,

Now, we can apply First Law of Thermodynamics as follows:

where,
ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)
W = Work done = ?
Therefore,

<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>
The magnetic north pole of the earth's magnet is in the geographic south pole.
- There are two magnetic and geographic poles each, north and south
- The two geographic poles are the locations where the earth's axis of rotation passes through which is imaginary
- The magnetic north and south poles are not the same as the geographic north and south poles
- In a compass, the needle points to the magnetic north pole
- By convention, the magnetic north pole corresponds to the geographic south pole
- The magnetic south pole corresponds to the geographic north pole
- The magnetic field lines of a magnet start from the magnetic north pole and end at the magnetic south pole
The magnetic north pole of the earth's magnet is the geographic south pole.
Learn more about earth's magnetism here:
brainly.com/question/3928159
#SPJ10
The magnetic field at the center of the arc is 4 × 10^(-4) T.
To find the answer, we need to know about the magnetic field due to a circular arc.
<h3>What's the mathematical expression of magnetic field at the center of a circular arc?</h3>
- According to Biot savert's law, magnetic field at the center of a circular arc is
- B=(μ₀ I/4π)× (arc/radius²)
- As arc is given as angle × radius, so
B=( μ₀I/4π)×(angle/radius)
<h3>What will be the magnetic field at the center of a circular arc, if the arc has current 26.9 A, radius 0.6 cm and angle 0.9 radian?</h3>
B=(μ₀ I/4π)× (0.9/0.006)
= (10^(-7)× 26.9)× (0.9/0.006)
= 4 × 10^(-4) T
Thus, we can conclude that the magnitude of magnetic field at the center of the circular arc is 4 × 10^(-4) T.
Learn more about the magnetic field of a circular arc here:
brainly.com/question/15259752
#SPJ4