Answer:
C. strike-slip fault
Explanation:
The scientist must have observed a strike- slip fault.
A fault is an evidence of brittle deformation of the crust in the presence of applied stress on earth materials. Here, the earth material is the rock subjected to tension.
Where a fault occurs, there must have been movement between two blocks of rocks. The direction of movement helps us to delineate the fault type.
- When two blocks moves past each other horizontally, it is a strike-slip fault like rubbing your palms together.
- When a block moves in the direction of the dip, it forms a dip-slip fault which results in a fault-block mountain characterized by graben and horst systems.
Option A, Plateau is a table landform usually a mountain with flat peak.
Option B is a bowl shaped stratigraphic pattern in which the youngest sequence is at the core of the strata or a fold.
So, the most fitting option is C, a strike-slip fault.
Answer:
The time taken by the duck to cross the lake is, t= 4 s
Explanation:
Given data,
The initial speed of the ducks, u = 3 m/s
The final speed of the ducks, v = 7 m/s
The acceleration of the duck, a = 1 m/s²
The formula for the acceleration is,
a = (v - u) / t
∴ t = (v - u) / a
Substituting the given values in the above equation,
t = (7 - 3) / 1
= 4 s
Hence, the time taken by the duck to cross the lake is, t= 4 s
Answer:
2. [B] = [L]/[T] and [C] = [L]/[T]
Explanation:
I assume you mean this:
A = B² + 2B⁴/C²
Since you can't add numbers with different units (for example, you can't add seconds to meters), each term in the sum must have the same units as A.
B² = [L]²/[T]²
B = [L]/[T]
B⁴/C² = [L]²/[T]²
C²/B⁴ = [T]²/[L]²
C² = B⁴ [T]²/[L]²
C² = ([L]/[T])⁴ [T]²/[L]²
C² = [L]²/[T]²
C = [L]/[T]
Notice we ignore the 2 coefficient, which is unitless.
Answer:
Explanation:
Acceleration
is expressed in the following formula:
Where:
is the final velocity of the projectile
is the initial velocity of the projectile
is the time
Solving:
This is the acceleration of the projectile
Answer:

Explanation:
The bike's acceleration can be found by using the following suvat equation:

where
v is the final velocity of the bike
u is the initial velocity
a is the acceleration
s is the distance covered
For the bike in the problem,
u = 0
v = 7 m/s
d = 40 m
Solving the equation for a, we find the acceleration:
