Answer:
The consecutive charge configuration has a more intense field than alternating
Explanation:
In each corner we place a different account there are only two different settings, see attached.
In the case of alternating charging (+ - + -) see diagram 1, the electric field in the center is canceled in pairs, resulting in a zero field
In the case of consecutive loads (+ + - -) in this case we have a result between the two charges, therefore the total field is
E = 2 k q / ra2 a cos 45
The consecutive charge configuration has a more intense field than alternating
Explanation:
It is given that, a long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire.
The charge per unit length of the wire is
and the net charge per unit length is
.
We know that there exist zero electric field inside the metal cylinder.
(a) Using Gauss's law to find the charge per unit length on the inner and outer surfaces of the cylinder. Let
are the charge per unit length on the inner and outer surfaces of the cylinder.
For inner surface,



For outer surface,



(b) Let E is the electric field outside the cylinder, a distance r from the axis. It is given by :


Hence, this is the required solution.
Answer:
8.75
Explanation:
First, find the force of friction.
Kinetic energy = work done by friction
½ mv² = Fd
½ (3.9 kg) (2.9 m/s)² = F (1.4 m)
F = 11.7 N
Next, find the distance at the new velocity.
Kinetic energy = work done by friction
½ mv² = Fd
½ (3.9 kg) (2.5 × 2.9 m/s)² = (11.7 N) d
d = 8.75 m
In almost every case in nature, adding heat to a liquid
causes the density of the liquid to decrease. That is,
when the liquid gets warmer, it expands and occupies
more space.
The one big exception to this rule is water !
Starting with a block of ice at zero°C (32°F), as the ice melts,
becomes water at zero°C, and all the way to 4°C (about 39°F),
its density increases all the way. That is, it shrinks and occupies
less volume as it goes from ice at zero°C to water at 4°C.
This sounds like an interesting but insignificant quirk ... until
you realize that if water didn't do this, then life on Earth would
be impossible !