1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrew [12]
3 years ago
6

Dana has a sports medal suspended by a long ribbon from her rearview mirror. As she accelerates onto the highway, she notices th

at the medal is hanging at an angle of 13 ∘∘ from the vertical.What is her acceleration?
Physics
1 answer:
ivann1987 [24]3 years ago
7 0

Answer:

2.26m/s^2

Explanation:

Suppose the tension in the ribbon is T.

The upwards component of the tension = Tcos13

The horizontal component of the tension = Tsin13

The weight of the medal = mg

In a vertical direction, mg is balanced by Tcos13, so mg=Tcos13, so T  = mg/cos13. The horizontal component of T is the force causing m to accelerate.  

F = ma\\T\sin13^{\circ} = ma

Substituting T= mg/cos13 gives:

\frac{mg}{cos13^{\circ}}sin13^{\circ} = ma

m cancels and you have

g\tan13 = a\\a=9.81\tan13^{\circ} \approx 2.26m/s^2

You might be interested in
The velocity versus time graph of particle A is tangent to the velocity versus time graph for particle B at point O. What is the
Fudgin [204]

Answer: C. -1.16 meters/second2

Explanation:

A= v/t (velocity/time)

in this case: v=7 and t=6

So, A= 7/6

A=1.16

The graph is decreasing so accelleration would be negative

A= <u>-1.16 meters/second2</u>

<u>Option C!</u> ; )

<u></u>

3 0
3 years ago
A rigid tank contains 1 kg of air (ideal gas) at 15 °C and 210 kPa. A paddle wheel supplies work input to the air such that fina
lisov135 [29]

Answer:

-58.876 kJ

Explanation:

m = mass of air = 1 kg

T₁ = Initial temperature = 15°C

T₂ = Final temperature = 97°C

Cp = Specific heat at constant pressure = 1.005 kJ/kgk

Cv = Specific heat at constant volume = 0.718 kJ/kgk

W = Work done

Q = Heat = 0 (since it is not mentioned we are considering adiabatic condition)

ΔU = Change in internal energy

Q = W+ΔU

⇒Q = W+mCvΔT

⇒0 = W+mCvΔT

⇒W = -mCvΔT

⇒Q = -1×0.718×(97-15)

⇒Q = -58.716 kJ

5 0
3 years ago
HELP PLS!<br> (LOOK AT THE PICTURE)
Arturiano [62]
The answer is b !!!! Hope it helps
4 0
3 years ago
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
3 years ago
What is the wavelength of a 10 Hz wave that travels with a speed of 5 m/s?
garik1379 [7]
B

V= f x lambda
V= 5m/s
F = 10hz
Lambda = ?
5 = 10 x lamba
5 /10 = lambda
Wavelength =0.5
8 0
2 years ago
Other questions:
  • If a 2 kg ball traveling at 10 m/s hits a wall and stops in 0.03 seconds, then how much force will the ball experience?
    13·1 answer
  • Differences between Constant velocity and constant acceleration
    12·1 answer
  • Preheating Air by Steam for Use in a Dryer. An air stream at 32.2°C is to be used in a dryer and is first preheated in a steam h
    7·1 answer
  • A car starts out traveling at 35 m/s. The car hits the brakes and decelerates at a rate of 3 m/s^2 for 5 seconds. What Distance
    6·1 answer
  • What is formed in the shape of a long, low land area between hills or mountains?
    15·1 answer
  • 20 POINTS 20 POINTS On a bright sunny day you decide to take a walk. You begin at your home and walk 1000 meters to an ice cream
    6·1 answer
  • What is the behavior that takes place when two waves of equal amplitude collide abd sum up to a bigger wave.
    6·1 answer
  • 19 point please please answer right need help
    6·1 answer
  • Please please help me :)
    14·1 answer
  • Can you answer this​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!