Answer: 5m/L^2
Explanation:
Inertial I = mr^2 where r = distance from axis of rotation, while m is the mass of the object.
I = 2[m(1L/2)^2] + 2[m(3L/2)^2] = 2m×. 25/L^2+ 3m×2. 25/L^2= 0. 5m/l^2 +4. 5m/l^2
= 5m/l^2.
Answer:
To establish this relationship we must examine the potentials that these forces create. The electrical potential is described by
Ve = k q / r
The potential for strong nuclear force is
Vn (r) = - gs / 4pir exp (-mrc / h)
Where gs is the stacking constant and r the distance between the nucleons,
We can compare these potentials where the force is derived from the relationship
E = -dU / dr
F = q E
Explanation:
Answer:
41.3 m/s^2 option (e)
Explanation:
force, F = 6.81 N
mass, m = 165 g = 0.165 kg
Let a be the acceleration of the puck.
Use newtons' second law
Force = mass x acceleration
6.81 = 0.165 x a
a = 41.27 m/s^2
a = 41.3 m/s^2
Thus, the acceleration of the puck is 41.3 m/s^2.
It depends on how you want to solve it you can solve it in many different meathods:$