1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
3 years ago
11

If 40 buttons are in the whole set, how many are in 5/8 of the ser

Mathematics
2 answers:
ryzh [129]3 years ago
4 0

Answer:

25

Step-by-step explanation:

40 * 5/8 = 200/8 = 25

miskamm [114]3 years ago
3 0

Answer:

they are 25 buttons

Step-by-step explanation:

40/8=5

5x5=25

25+5+5+5=40

You might be interested in
Part of a shape is drawn.
frosja888 [35]

Answer:

The points of the rotated shape are: (4, 1), (5, 3), (4, 4), (2, 1), (1, 3), (2, 4)

Step-by-step explanation:

From the part of the shape we can see and the symmetry, the missing points are:

(-2, -1)

(-1, -3)

(-2, -4)

Rotation 180° about the origin transforms the point (x, y) into (-x, -y). Applying this rule to our figure, we get:

(-4, -1) -> (4, 1)

(-5, -3) -> (5, 3)

(-4, -4) -> (4, 4)

(-2, -1) -> (2, 1)

(-1, -3) -> (1, 3)

(-2, -4) -> (2, 4)

6 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Tom has 15 pencils. 5 of them do not have erasers. which ratio compares the number of pencils without erasers to the number of p
Ipatiy [6.2K]
B. 5:10 because 15-5=10 which is the number of pencils with erasers and the 5 left are the amount of pencils which are missing an eraser
6 0
3 years ago
What is 1/4 times 2 -9​
krek1111 [17]

Answer:

-8.5

Step-by-step explanation:

1/4 times 2= 0.5

0.5-9=-8.5

Hope this helps :D

5 0
3 years ago
Read 2 more answers
PLEASE HELP, WILL MARK BRAINLIEST!
Leokris [45]

Answer:

8,5 feet

Step-by-step explanation:

The equation of the form

x² + y² = (r)²

Is the equation of the circumference

We have for the pool:

x²  +  y²  = 2500      ⇒  x²  +  y²  = (50)²

And for the outside edge of the footpath

x²  +  y²  = 3422,25  ⇒  x² + y²  = (58,5)²

So we obtain the radius of each circumference

For the outside edge of the pool  r₁  = 50 feet

For the outside edge of the footpath r₂ = 58,5  feet

Then the width of the footpath is  58,5  - 50  =  8,5 feet

8 0
3 years ago
Other questions:
  • True or false !!!<br><br> T or F
    15·1 answer
  • F() = 37. What are the domain and range of f-12)?
    8·1 answer
  • On average a fifth grader blinks 15 times per minute. About how many times will a fifth grader blink in a day?
    7·2 answers
  • Which variable is likely to be linked to both of the variables mentioned in this statement? There is a strong positive correlati
    13·1 answer
  • 1. What is the last step in constructing an angle?<br> Help please<br> For 30 points!!!
    15·1 answer
  • E
    11·1 answer
  • A gym membership charges an initial
    12·1 answer
  • 69 minutes equals how many hours and minutes?
    10·1 answer
  • What is the name of the shape depicted in the graph below?
    12·2 answers
  • PLEASE HELP WITH THIS ONE QUESTION
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!