Explanation:
Rutherford conducted an experiment in which he took a thin gold particle film on which he passes alpha- particles. He noticed that:
- Most of the alpha particles get through the film and can be detected by the detector.
- Around small portion of the alpha particle deflected at small angles.
- A very very few alpha particle (approximately 1 out of 1 million alpha particles) just retraced their path which means come back from the center.
He concluded that:
<u>Most of the space of the atom is empty and in the center of the atom , there is solid mass which is the cause of the alpha particles to come back. He gave the term nucleus to this solid mass.</u>
NaOH reacts with CH3COOH in 1:1 molar ratio to produce CH3COONa
NaOH + CH3COOH → CH3COONa + H2O
Mol CH3COOH in 52.0mL of 0.35M solution = 52.0/1000*0.35 = 0.0182 mol CH3COOH
Mol NaOH in 19.0mL of 0.40M solution = 19.0/1000*0.40 = 0.0076 mol NaOH
These will react to produce 0.0076 mol CH3COONa and there will be 0.0182 - 0.0076 = 0.0106 mol CH3COOH remaining in solution unreacted . Total volume of solution = 52.0+19.0 = 71mL or 0.071L
Molarity of CH3COOH = 0.0106/0.071 = 0.1493M
CH3COONa = 0.0076 / 0.071 = 0.1070M
pKa acetic acid = - log Ka = -log 1.8*10^-5 = 4.74.
pH using Henderson - Hasselbalch equation:
pH = pKa + log ([salt]/[acid])
pH = 4.74 + log ( 0.1070/0.1493)
pH = 4.74 + log 0.717
pH = 4.74 + (-0.14)
pH = 4.60.
Answer:
To release 7563 kJ of heat, we need to burn 163.17 grams of propane
Explanation:
<u>Step 1</u>: Data given
C3H8 + 5O2 -----------> 3CO2 + 4H2O ΔH° = –2044 kJ
This means every mole C3H8
Every mole of C3H8 produces 2044 kJ of heat when it burns (ΔH° is negative because it's an exothermic reaction)
<u>Step 2: </u>Calculate the number of moles to produce 7563 kJ of heat
1 mol = 2044 kJ
x mol = 7563 kJ
x = 7563/2044 = 3.70 moles
To produce 7563 kJ of heat we have to burn 3.70 moles of C3H8
<u>Step 3: </u>Calculate mass of propane
Mass propane = moles * Molar mass
Mass propane = 3.70 moles * 44.1 g/mol
Mass propane = 163.17 grams
To release 7563 kJ of heat, we need to burn 163.17 grams of propane
Answer:
the smallest mass of material that can sustain a chain reaction
Explanation:
Critical mass refers to the smallest possible mass of a fissionable material that can sustain a chain reaction