Answer:
A (contains most of the mass of the atom)
Evidence has it that a proton is about 2000 times as massive as an electron.
And there is usually multiple protons and neutrons in the nucleus
From what I just said, you can say that B is wrong
C however is also wrong because protons have a +charge and neutrons are neutrle which means you always have a charge > (greater than) 0
And D is wrong because electrons (which are not in the nucleus) have a neg charge. and protons have a + charge and are in the nucleus
So your answer is A
Hope it helped
Spiky Bob
Answer:
D
Explanation:
the charges need to balence out
so finding the LCM which is 12 we find we need 3x's
and 4 zs
so that makes the formula X3Z4 which is D
The physical method that can be used for obtaining a sample of salt from a small beaker of salt and water would be evaporation.
<h3>Separation of salt and water</h3>
A mixture of salt and water can be separated by a method known as evaporation. This is based on the assumption that the salt in question is a water-soluble salt.
In order to separate the salt/water mixture:
- Place the mixture in a suitable evaporating dish
- Boil the mixture until all the water evaporates.
- The remaining residue would be the salt
Care should be taken not to overheat the residue in order to avoid melting. Evaporation is generally used to separate a mixture of water and soluble salt. If the salt is insoluble, filtration using a suitable filter paper will filter off the salt while the water is collected as the filtrate.
More on evaporation can be found here: brainly.com/question/1097783
#SPJ1
Which physical method can be used for obtaining a sample of salt from a small beaker of salt water?
<u>Answer:</u> The
for the reaction is -1052.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times \Delta H_1]+[1\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%5CDelta%20H_1%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1052.8 kJ.