Answer: The coefficients are 2, 2 and 1.
Explanation: According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants.
The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for the given reaction is:
2H2o➡️2h2+o2
Answer:
There are 1.287 grams of acetylene collected
Explanation:
Total gas pressure = 909 mmHg
Vapor pressure of water = 20.7 mmHg
Pressure of acetylene = 909 mmHg - 20.7 mmHg = 888.3 mmHg
1mmHg = 1 torr
22 ° C + 273.15 = 295.15 Kelvin
Ideal gas law ⇒ pV = nRT
⇒ with p = pressure of the gas in atm
⇒ with V = volume of the gas in L
⇒ with n = amount of substance of gas ( in moles)
⇒ with R = gas constant, equal to the product of the Boltzmann constant and the Avogadro constant (62.36 L * Torr *K^−1 *mol^−1)
⇒ with T = absolute temperature of the gas (in Kelvin)
888.3 torr * 1.024 L = n * 62.36 L * Torr *K^−1 *mol^−1 * 295.15 K
n = 0.04942 moles of C2H2
Mass of C2H2 = 0.04942 moles x 26.04 g/mole = 1.287 g
There are 1.287 grams of acetylene collected
Answer:
Option C. Energy Profile D
Explanation:
Data obtained from the question include:
Enthalpy change ΔH = 89.4 KJ/mol.
Enthalpy change (ΔH) is simply defined as the difference between the heat of product (Hp) and the heat of reactant (Hr). Mathematically, it is expressed as:
Enthalpy change (ΔH) = Heat of product (Hp) – Heat of reactant (Hr)
ΔH = Hp – Hr
Note: If the enthalpy change (ΔH) is positive, it means that the product has a higher heat content than the reactant.
If the enthalpy change (ΔH) is negative, it means that the reactant has a higher heat content than the product.
Now, considering the question given, the enthalpy change (ΔH) is 89.4 KJ/mol and it is a positive number indicating that the heat content of the product is higher than the heat content of the reactant.
Therefore, Energy Profile D satisfy the enthalpy change (ΔH) for the formation of CS2 as it indicates that the heat content of product is higher than the heat content of the reactant.
Answer:
d) They're studying something for which they cant do an experiment
Explanation: