Answer:
mass of CO = 210.42 g
mass in three significant figures = 210. g
Explanation:
Given data:
mass of Fe2O3 = 0.400 Kg
mass of CO= ?
Solution:
chemical equation:
Fe2O3 + 3CO → 2Fe + 3CO2
Now we will calculate the molar mass of Fe2O3 and CO.
Molar mass of Fe2O3 = (55.845 × 2) + (16 × 3) = 159.69 g/mol
Molar mass of CO = 12+ 16 = 28 g/mol
now we will convert the kg of Fe2O3 in g.
mass of Fe2O3 = 0.400 kg × 1000 = 400 g
number of moles of Fe2O3 = 400 g/ 159.69 g/mol = 2.505 mol
mass of CO = moles of Fe2O3 × 3( molar mass of CO)
mass of CO = 2.505 mol × 84 g/mol
mass of CO = 210.42 g
mass in three significant figures = 210. g
Percent error is the difference between the measured and known value, divided by the known value, multiplied by 100%.
So first, we take our measured value, .299 cm, minus our known value, .225 cm.
.299 cm - .225 cm=.004 cm
Next, we divide that by our known value

Finally, multiply your answer by 100
.0177777778 x 100= 1.77777778 %
Round to three significant figures, and you're done.
=1.78 % error
Answer:
The mole fraction of ethanol is 0.6. A 10 mL volumetric pipette must be used for to measure the 10 mL of ethanol. The vessel should be clean and purged.
Explanation:
For calculating mole fraction of ethanol, the amount of moles ethanol must be calculated. Using ethanol density (0.778 g/mL), 10 mL of ethanol equals to 7.89 g of ethanol and in turn 0.17 moles of ethanol. The same way for calculate the amount of water moles (ethanol density=0.997 g/mL). 2 mL of water correspond to 0.11. The total moles are: 0.17+0.11=0.28. Mole fraction alcohol is: 0.17/0.28=0.6
Answer:
Explanation:
The Ce metal has electronic configuration as follows
[Xe] 4f¹5d¹6s²
After losing 4 electrons , it gains noble gas configuration ,. So Ce ⁺⁴ is stable.
Eu has electronic configuration as follows
[ Xe ] 4 f ⁷6s²
[ Xe ] 4 f ⁷
Its outermost orbit contains 2 electrons so Eu²⁺ is stable. Its +3 oxidation state is also stable.
Ce⁺²