Answer:
mass = 0.907865 grams
Explanation:
From the periodic table:
molar mass of Li = 6.941 grams
molar mass of F = 18.998 grams
Therefore:
molar mass of LiF = 6.941 + 18.998 = 25.939 grams/mole
number of moles can be calculated as follows:
number of moles = mass / molar mass
We have:
number of moles = 0.035 moles
molar mass = 25.939 grams/mole
Substitute in the equation to get the mass as follows:
0.035 = mass / 25.939
mass = 0.035 * 25.939 = 0.907865 grams
Hope this helps :)
Answer:
Part A
Given that the graph is symmetrical and bell shaped, the average kinetic energy is given by the midline of graph, which corresponds to the common speed of the highest number of the population
Part B
The formula for the average kinetic energy, K.E. = (3/2)·(R/NA)·T
Therefore, the part of the graph that indicates the temperature of the sample is the average kinetic energy. K.E.
Part C
At a lower temperature, the heat is less evenly distributed and we have the distribution T2 higher than T1
Please see the attached graph created with MS Visio
Explanation:
For a solid I would say something like aerogel would have a large volume but very little mass.
Let me know if this helped or not.
The answer is A.18 let me know if you want an explanation
The answer is rounded off to 0.0278 mol C6H12O6