The reducing agent in the reaction 2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) is lithium (Li).
The general reaction is:
2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) (1)
We can write the above reaction in <u>two reactions</u>, one for oxidation and the other for reduction:
Li⁰(s) → Li⁺(aq) + e⁻ (2)
Fe²⁺(aq) + 2e⁻ → Fe⁰(s) (3)
We can see that Li⁰ is oxidizing to Li⁺ (by <u>losing</u> one electron) in the lithium acetate (<em>reaction 2</em>) and that Fe²⁺ in iron(II) acetate is reducing to Fe⁰ (by <u>gaining</u> two <em>electrons</em>) (<em>reaction 3</em>).
We must remember that the reducing agent is the one that will be oxidized by <u>reducing another element</u> and that the oxidizing agent is the one that will be reduced by <u>oxidizing another species</u>.
In reaction (1), the<em> reducing agent</em> is <em>Li</em> (it is oxidizing to Li⁺), and the <em>oxidizing agent </em>is<em> Fe(CH₃COO)₂</em> (it is reducing to Fe⁰).
Therefore, the reducing agent in reaction (1) is lithium (Li).
Learn more here:
I hope it helps you!
<span>Anthracite is the hardest type of coal.</span>
Frequency = velocity of propagation / wavelength.
<span>For light, we assume it is moving in a vacuum, so vp is 3e8 m/s. The wavelength of 310nm is 310e-9 meters. Then we plug the numbers in, and we get (3e8 m/s) / (310e-9 m) = 967.742e12 Hz because 1/s is the same as cycles/sec, which is a Hertz.</span>
Answer:
15.2 mL
Explanation:
First we calculate the volume of the copper

when this volume of copper is added to the water, the water level will rise by the level of the volume of copper. So the final volume is:
14.6 mL + 0.5580 mL = 15.158 mL
Since the measuring cylinder is graduated to one decimal place , we can round this up to 15.2 mL