Answer:
shiii
Step-by-step explanation:
Step-by-step explanation:
The solution to this problem is very much similar to your previous ones, already answered by Sqdancefan.
Given:
mean, mu = 3550 lbs (hope I read the first five correctly, and it's not a six)
standard deviation, sigma = 870 lbs
weights are normally distributed, and assume large samples.
Probability to be estimated between W1=2800 and W2=4500 lbs.
Solution:
We calculate Z-scores for each of the limits in order to estimate probabilities from tables.
For W1 (lower limit),
Z1=(W1-mu)/sigma = (2800 - 3550)/870 = -.862069
From tables, P(Z<Z1) = 0.194325
For W2 (upper limit):
Z2=(W2-mu)/sigma = (4500-3550)/879 = 1.091954
From tables, P(Z<Z2) = 0.862573
Therefore probability that weight is between W1 and W2 is
P( W1 < W < W2 )
= P(Z1 < Z < Z2)
= P(Z<Z2) - P(Z<Z1)
= 0.862573 - 0.194325
= 0.668248
= 0.67 (to the hundredth)
Given :
A 136 foot tall cell phone tower casts a 79.9 foot shadow.
To Find :
The shadow length for a nearby 40 foot telephone pole .
Solution :
We know , the ratio of height and shadow , will be same for every object .
Let , length of shadow of pole is x .
So ,

Therefore , the length of shadow of tower is 23.5 foot .
Hence , this is the required solution .
Answer:
Step-by-step explanation:
k = 4/24 = 1/6
Divide maple street’s length by 3