1)
<span>m(NaCl) = 1.95 g
V(H2O) = 250mL
M(NaCl) = </span><span>58.5 g/mole
Since waters density value is 1g/mL, it can be assumed that volume and mass of water are same values:
</span>V(H2O) = 250ml = 250g = 0.25 kg<span>
</span><span>molality of NaCl:
</span><span>
n(NaCl)=m/M=1.95/58.5= 0.033 mole
</span>molality b(NaCl)=n(NaCl) / V (H2O)= 0.033/0.25 = 0.132 mol/kg
<span>
milimolality of NaOH = 0.132/0,001 = 132 mmole/kg
</span>
milliosmolality of NaOH = milimolality x N of ions formed in dissociation
Since NaCl dissociates into 2 ions in solution:
<span>
</span>milliosmolality of NaOH = 132 x 2 = 264 osmol<span>es/kg
</span>
2)
m(gl) = 9 g
V(H2O) = 250mL
M(NaCl) = 180 g/mole
Since waters density value is 1g/mL, it can be assumed that volume and mass of water are same values:
V(H2O) = 250ml = 250g = 0.25 kg
molality of glucose:
n(gl)=m/M=9/180= 0.05 mole
molality b(gl)=n(gl) / V (H2O)= 0.05/0.25 = 0.2 mol/kg
milimolality of glucose = 0.132/0,001 = 200 mmole/kg
milliosmolality of glucose = milimolality x N of ions formed in dissociation
Since glucose does not dissociate, milimolality and milliosmolality are same:
milliosmolality of glucose = 200 osmoles/kg
3)
The osmosis represents the diffusion of solvent molecules through a semi-permeable membrane that allows passage solvent molecules but does not to the dissolved substance molecule. The osmosis occurs when the concentrations of the solution on both sides of the membrane are different. Since the semi-permeable membrane only permeates the solvent molecules, but not the particles of the dissolved substance, it occurs the solvent diffusion through the membrane, i.e. the solvent molecules pass through the membrane to equalize the concentration on both sides of the membrane. Solvents molecules move from the middle with a lower concentration in the middle with a higher concentration of dissolved substances.
In our case, osmosis will occur because the concentration of NaCl solution and the concentration of glucose solution do not have same values. Osmosis will occur in the direction of glucose solution because it has a lower concentration.
The answer you are looking for is True
<h2>
Answer:</h2>
Nucleus.
<h2>
Explanation:</h2>
- In an atom the nucleus has an overall positive charge as it contains the protons.
- Every atom has no overall charge (neutral). While atoms do contain charged particles, they have the same number of positive protons as negative electrons( for example a sodium atom has 11 electrons which are of negative charge and 11 protons which are of positive charge).
- These opposite charges cancel each other out making the atom neutral.
Result: Nucleus is the overall positive charge of an atom.
Answer:
b. ΔH and ΔS are negative at all temperatures .
Explanation:
During the process of condensation ,
The gaseous state convert to liquid state ,
Hence , the entropy of the system reduces , i.e. , the randomness decreases .
And the value for entropy is negative ,
hence ,
Δ S = negative ,
Δ H = negative ,
Since ,
The heat is releasing from system .
hence , the most appropriate option will be ΔH and ΔS are negative at all temperatures .