There are several information's already given in the question. Based on the information's provided, the answer can be easily deduced.
V1 = 25 ml
= 25/1000 liter
= 0.025 liter
V2 = 18 ml
= 18/1000 liter
= 0.018 liter
M2 = 1.0 M
M1 = ?
Then
M1V1 = M2V2
M1 = M2V2/V1
= (1 * 0.018)/0.025
= 0.72 M
From the above deduction, it can be easily concluded that the correct option among all the options that are given in the question is the first option or option "A". I hope that this is the answer that has actually come to your help.
Answer:
Solute - The solute is the substance that is being dissolved by another substance. In the example above, the salt is the solute. Solvent - The solvent is the substance that dissolves the other substance. In the example above, the water is the solvent.
Explanation:
Answer:

Explanation:
From the question, we have been asked to find the molarity of FeCl2 having a volume of 450 mL,
We have been provided with 225 g which is proportional to 1.8 moles.
We know that molarity of any solution should be in mol/L.
1 mole contained in 1 L means it has a molarity of 1 mol/L
Let's convert 450 mL to Litres which is,

= 0.450 L
Thus,
1 mole is contained in 1L
x moles are contained in 0.450 L
Hence,
x mole/molarity = {1 mole x 1 L}/{0.450 L}
= 4 mol/L
Therefore 4 mol/L is the molar concentration.
Answer:
(R)-but-3-en-2-ylbenzene
Explanation:
In this reaction, we have a very <u>strong base</u> (<em>sodium ethoxide</em>). This base, will remove a hydrogen producing a double bond. We know that the reaction occurs through an <u>E2 mechanism</u>, therefore, the hydrogen that is removed must have an <u>angle of 180º</u> with respect to the leaving group (the "OH"). This is known as the <u>anti-periplanar configuration</u>.
The hydrogen that has this configuration is the one that placed with the <u>dashed bond</u> (<em>red hydrogen</em>). In such a way, that the base will remove this hydrogen, the "OH" will leave the molecule and a double bond will be formed between the methyl and the carbon that was previously attached to the "OH", producing the molecule (R) -but-3- en-2-ylbenzene.
See figure 1
I hope it helps!