Answer : The concentration of NOBr after 95 s is, 0.013 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant =
t = time taken = 95 s
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.86 M
Now put all the given values in above equation, we get:
![0.80=\frac{1}{95}\left (\frac{1}{[A]}-\frac{1}{(0.86)}\right)](https://tex.z-dn.net/?f=0.80%3D%5Cfrac%7B1%7D%7B95%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.86%29%7D%5Cright%29)
[A] = 0.013 M
Hence, the concentration of NOBr after 95 s is, 0.013 M
Chemistry cool
<span>CO2 (g) is your answer</span>
Answer: A. the chemical change will occur faster in beaker X.
Explanation:
Temperature is one of the factors that affect the rates of chemical reactions. Increase in temperature increases the rates of reaction by increasing the kinetic energy of the reacting particles so that energetic collisions occur and more bonds in the reactants will be broken and; atoms and ions recombine to form new compounds. Beaker X which is at room temperature has higher temperature than beaker Y which is kept in the refrigerator, thus reacting particles in beaker X has more kinetic energy than the ones in beakerA. the chemical change will occur faster in beaker X. Y.
Answer:
c
Explanation:
sorry if im wrong my apolgies but i think c cus thats the only one that says equal amounts of something
like to test a drop of each so its balanced
Its solubility because you are looking at how much will desolve